scholarly journals Augmenting Advanced Analytics into Enterprise Systems: A Focus on Post-Implementation Activities

Systems ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 31 ◽  
Author(s):  
Ahmed Elragal ◽  
Hossam El-Din Hassanien

An analytics-empowered enterprise system looks to many organizations to be a far-fetched target, owing to the vast amounts of factors that need to be controlled across the implementation lifecycle activities, especially during usage and maintenance phases. On the other hand, advanced analytics techniques such as machine learning and data mining have been strongly present in academic as well as industrial arenas through robust classification and prediction. Correspondingly, this paper is set out to address a methodological approach that works on tackling post-live implementation activities, focusing on employing advanced analytics techniques to detect (business process) problems, find and recommend a solution to them, and confirm the solution. The objective is to make enterprise systems self-moderated by reducing the reliance on vendor support. The paper will profile an advanced analytics engine architecture fitted on top of an enterprise system to demonstrate the approach. Employing an advanced analytics engine has the potential to support post-implementation activities. Our research is innovative in two ways: (1) it enables enterprise systems to become self-moderated and increase their availability; and (2) the IT artifact i.e., the analytics engine, has the potential to solve other problems and be used by other systems, e.g., HRIS. This paper is beneficial to businesses implementing enterprise systems. It highlights how enterprise systems could be safeguarded from retirement caused by post-implementation problems.

Author(s):  
Haseeb Ali ◽  
Mohd Najib Mohd Salleh ◽  
Rohmat Saedudin ◽  
Kashif Hussain ◽  
Muhammad Faheem Mushtaq

<span>The imbalanced data problems in data mining are common nowadays, which occur due to skewed nature of data. These problems impact the classification process negatively in machine learning process. In such problems, classes have different ratios of specimens in which a large number of specimens belong to one class and the other class has fewer specimens that is usually an essential class, but unfortunately misclassified by many classifiers. So far, significant research is performed to address the imbalanced data problems by implementing different techniques and approaches. In this research, a comprehensive survey is performed to identify the challenges of handling imbalanced class problems during classification process using machine learning algorithms. We discuss the issues of classifiers which endorse bias for majority class and ignore the minority class. Furthermore, the viable solutions and potential future directions are provided to handle the problems<em>.</em></span>


Author(s):  
Stephan Meisel

Basically, Data Mining (DM) and Operations Research (OR) are two paradigms independent of each other. OR aims at optimal solutions of decision problems with respect to a given goal. DM is concerned with secondary analysis of large amounts of data (Hand et al., 2001). However, there are some commonalities. Both paradigms are application focused (Wu et al., 2003; White, 1991). Many Data Mining approaches are within traditional OR domains like logistics, manufacturing, health care or finance. Further, both DM and OR are multidisciplinary. Since its origins, OR has been relying on fields such as mathematics, statistics, economics and computer science. In DM, most of the current textbooks show a strong bias towards one of its founding disciplines, like database management, machine learning or statistics. Being multidisciplinary and application focused, it seems to be a natural step for both paradigms to gain synergies from integration. Thus, recently an increasing number of publications of successful approaches at the intersection of DM and OR can be observed. On the one hand, efficiency of the DM process is increased by use of advanced optimization models and methods originating from OR. On the other hand, effectiveness of decision making is increased by augmentation of traditional OR approaches with DM results. Meisel and Mattfeld (in press) provide a detailed discussion of the synergies of DM and OR.


Author(s):  
Giovanni Felici ◽  
Klaus Truemper

The method described in this chapter is designed for data mining and learning on logic data. This type of data is composed of records that can be described by the presence or absence of a finite number of properties. Formally, such records can be described by variables that may assume only the values true or false, usually referred to as logic (or Boolean) variables. In real applications, it may also happen that the presence or absence of some property cannot be verified for some record; in such a case we consider that variable to be unknown (the capability to treat formally data with missing values is a feature of logic-based methods). For example, to describe patient records in medical diagnosis applications, one may use the logic variables healthy, old, has_high_temperature, among many others. A very common data mining task is to find, based on training data, the rules that separate two subsets of the available records, or explains the belonging of the data to one subset or the other. For example, one may desire to find a rule that, based one the many variables observed in patient records, is able to distinguish healthy patients from sick ones. Such a rule, if sufficiently precise, may then be used to classify new data and/or to gain information from the available data. This task is often referred to as machine learning or pattern recognition and accounts for a significant portion of the research conducted in the data mining community. When the data considered is in logic form or can be transformed into it by some reasonable process, it is of great interest to determine explanatory rules in the form of the combination of logic variables, or logic formulas. In the example above, a rule derived from data could be:if (has_high_temperature is true) and (running_nose is true) then (the patient is not healthy).


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2019 ◽  
Vol 12 (3) ◽  
pp. 171-179 ◽  
Author(s):  
Sachin Gupta ◽  
Anurag Saxena

Background: The increased variability in production or procurement with respect to less increase of variability in demand or sales is considered as bullwhip effect. Bullwhip effect is considered as an encumbrance in optimization of supply chain as it causes inadequacy in the supply chain. Various operations and supply chain management consultants, managers and researchers are doing a rigorous study to find the causes behind the dynamic nature of the supply chain management and have listed shorter product life cycle, change in technology, change in consumer preference and era of globalization, to name a few. Most of the literature that explored bullwhip effect is found to be based on simulations and mathematical models. Exploring bullwhip effect using machine learning is the novel approach of the present study. Methods: Present study explores the operational and financial variables affecting the bullwhip effect on the basis of secondary data. Data mining and machine learning techniques are used to explore the variables affecting bullwhip effect in Indian sectors. Rapid Miner tool has been used for data mining and 10-fold cross validation has been performed. Weka Alternating Decision Tree (w-ADT) has been built for decision makers to mitigate bullwhip effect after the classification. Results: Out of the 19 selected variables affecting bullwhip effect 7 variables have been selected which have highest accuracy level with minimum deviation. Conclusion: Classification technique using machine learning provides an effective tool and techniques to explore bullwhip effect in supply chain management.


Author(s):  
Rachana Kamtekar

Chapter 1 lays out the methodological approach employed throughout the book, which is to pay attention to the dialectical dependence of what the main speaker in the dialogue says on the intellectual problem(s) set up in the dialogue both by himself and the other speakers. To illustrate, Chapter 1 describes Socrates’ use of the method of hypotheses from the Meno and Phaedo to answer questions that go beyond his claims to knowledge in the Republic.


2021 ◽  
Vol 1088 (1) ◽  
pp. 012035
Author(s):  
Mulyawan ◽  
Agus Bahtiar ◽  
Githera Dwilestari ◽  
Fadhil Muhammad Basysyar ◽  
Nana Suarna

2021 ◽  
Vol 45 (10) ◽  
Author(s):  
Inés Robles Mendo ◽  
Gonçalo Marques ◽  
Isabel de la Torre Díez ◽  
Miguel López-Coronado ◽  
Francisco Martín-Rodríguez

AbstractDespite the increasing demand for artificial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on different platforms, and its implementations in healthcare emergencies. The methodology applied for the identification and selection of the scientific studies and the different applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n = 4, 20%) or medical services or emergency services (n = 4, 20%). Only 2 were focused on m-health (n = 2, 10%). On the other hand, 12 apps were chosen for full testing on different devices. These apps dealt with pre-hospital medical care (n = 3, 25%) or clinical decision support (n = 3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and offers solutions to improve the efficiency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.


Sign in / Sign up

Export Citation Format

Share Document