scholarly journals Occurrence of Ergot Alkaloids in Barley and Wheat from Algeria

Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 316
Author(s):  
Laura Carbonell-Rozas ◽  
Choukri Khelifa Mahdjoubi ◽  
Natalia Arroyo-Manzanares ◽  
Ana M. García-Campaña ◽  
Laura Gámiz-Gracia

The natural occurrence of six major ergot alkaloids, ergometrine, ergosine, ergotamine, ergocornine, ergokryptine and ergocristine, as well as their corresponding epimers, were investigated in 60 cereal samples (barley and wheat) from Algeria. Ultra-high performance liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS) and a QuEChERS extraction method were used for sample analysis. The results revealed that 12 out of 60 samples (20%) were contaminated with ergot alkaloids. Wheat was the most contaminated matrix, with an incidence of 26.7% (8 out of 30 samples). The concentration of total ergot alkaloids ranged from 17.8 to 53.9 µg/kg for barley and from 3.66 to 76.0 μg/kg for wheat samples. Ergosine, ergokryptine and ergocristine showed the highest incidences in wheat, while ergometrine was the most common ergot in barley.

Metabolomics ◽  
2020 ◽  
Vol 16 (12) ◽  
Author(s):  
Miriam Michel ◽  
Christina Salvador ◽  
Verena Wiedemair ◽  
Mark Gordian Adam ◽  
Kai Thorsten Laser ◽  
...  

Abstract Introduction Metabolomics studies are not routine when quantifying amino acids (AA) in congenital heart disease (CHD). Objectives Comparative analysis of 24 AA in serum by traditional high-performance liquid chromatography (HPLC) based on ion exchange and ninhydrin derivatisation followed by photometry (PM) with ultra-high-performance liquid chromatography and phenylisothiocyanate derivatisation followed by tandem mass spectrometry (TMS); interpretation of findings in CHD patients and controls. Methods PM: Sample analysis as above (total run time, ~ 119 min). TMS: Sample analysis by AbsoluteIDQ® p180 kit assay (BIOCRATES Life Sciences AG, Innsbruck, Austria), which employs PITC derivatisation; separation of analytes on a Waters Acquity UHPLC BEH18 C18 reversed-phase column, using water and acetonitrile with 0.1% formic acid as the mobile phases; and quantification on a Triple-Stage Quadrupole tandem mass spectrometer (Thermo Fisher Scientific, Waltham, MA) with electrospray ionisation in the presence of internal standards (total run time, ~ 8 min). Calculation of coefficients of variation (CV) (for precision), intra- and interday accuracies, limits of detection (LOD), limits of quantification (LOQ), and mean concentrations. Results Both methods yielded acceptable results with regard to precision (CV < 10% PM, < 20% TMS), accuracies (< 10% PM, < 34% TMS), LOD, and LOQ. For both Fontan patients and controls AA concentrations differed significantly between methods, but patterns yielded overall were parallel. Conclusion Serum AA concentrations differ with analytical methods but both methods are suitable for AA pattern recognition. TMS is a time-saving alternative to traditional PM under physiological conditions as well as in patients with CHD. Trial registration number ClinicalTrials.gov Identifier NCT03886935, date of registration March 27th, 2019 (retrospectively registered).


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3717
Author(s):  
Laura Carbonell-Rozas ◽  
Laura Gámiz-Gracia ◽  
Francisco J. Lara ◽  
Ana M. García-Campaña

An ultra-high performance liquid chromatography coupled to tandem mass spectrometry method is proposed for the determination of the major ergot alkaloids (ergometrine, ergosine, ergotamine, ergocornine, ergokryptine, ergocristine) and their epimers (ergometrinine, ergosinine, ergotaminine, ergocorninine, ergokryptinine, and ergocristinine) in oat-based foods and food supplements. A modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) procedure was applied as sample treatment, reducing the consumption of organic solvent and increasing sensitivity. This method involved an extraction with acetonitrile and ammonium carbonate (85:15, v/v) and a clean-up step based on dispersive solid-phase extraction, employing a mixture of C18/Z-Sep+ as sorbents. Procedural calibration curves were established and limits of quantification were below 3.2 μg/kg for the studied compounds. Repeatability and intermediate precision (expressed as RSD%) were lower than 6.3% and 15%, respectively, with recoveries ranging between 89.7% and 109%. The method was applied to oat-based products (bran, flakes, flour, grass, hydroalcoholic extracts, juices, and tablets), finding a positive sample of oat bran contaminated with ergometrine, ergosine, ergometrinine, and ergosinine (total content of 10.7 μg/kg).


Sign in / Sign up

Export Citation Format

Share Document