scholarly journals The Response of Selected Triticum spp. Genotypes with Different Ploidy Levels to Head Blight Caused by Fusarium culmorum (W.G.Smith) Sacc.

Toxins ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 112 ◽  
Author(s):  
Marian Wiwart ◽  
Elżbieta Suchowilska ◽  
Wolfang Kandler ◽  
Michael Sulyok ◽  
Urszula Wachowska ◽  
...  
2022 ◽  
Vol 12 ◽  
Author(s):  
Andrea Ficke ◽  
Belachew Asalf ◽  
Hans Ragnar Norli

Plants and fungi emit volatile organic compounds (VOCs) that are either constitutively produced or are produced in response to changes in their physico-chemical status. We hypothesized that these chemical signals could be utilized as diagnostic tools for plant diseases. VOCs from several common wheat pathogens in pure culture (Fusarium graminearum, Fusarium culmorum, Fusarium avenaceum, Fusarium poae, and Parastagonospora nodorum) were collected and compared among isolates of the same fungus, between pathogens from different species, and between pathogens causing different disease groups [Fusarium head blight (FHB) and Septoria nodorum blotch (SNB)]. In addition, we inoculated two wheat varieties with either F. graminearum or P. nodorum, while one variety was also inoculated with Blumeria graminis f.sp. tritici (powdery mildew, PM). VOCs were collected 7, 14, and 21 days after inoculation. Each fungal species in pure culture emitted a different VOC blend, and each isolate could be classified into its respective disease group based on VOCs with an accuracy of 71.4 and 84.2% for FHB and SNB, respectively. When all collection times were combined, the classification of the tested diseases was correct in 84 and 86% of all cases evaluated. Germacrene D and sativene, which were associated with FHB infection, and mellein and heptadecanone, which were associated with SNB infection, were consistently emitted by both wheat varieties. Wheat plants infected with PM emitted significant amounts of 1-octen-3-ol and 3,5,5-trimethyl-2-hexene. Our study suggests that VOC blends could be used to classify wheat diseases. This is the first step toward a real-time disease detection in the field based on chemical signatures of wheat diseases.


Plant Disease ◽  
2021 ◽  
Author(s):  
Brian Mueller ◽  
Carol Groves ◽  
Damon L. Smith

Fusarium graminearum commonly causes Fusarium head blight (FHB) on wheat, barley, rice, and oats. Fusarium graminearum produces nivalenol and deoxynivalenol (DON) and forms derivatives of DON based on its acetylation sites. The fungus is profiled into chemotypes based on DON derivative chemotypes (3 acetyldeoxynivalenol (3ADON) chemotype; 15 acetyldeoxynivalenol (15ADON) chemotype) and/or the nivalenol (NIV) chemotype. The current study assessed the Fusarium population found on wheat and the chemotype profile of the isolates collected from 2016 and 2017 in Wisconsin. Fusarium graminearum was isolated from all locations sampled in both 2016 and 2017. Fusarium culmorum was isolated only from Door County in 2016. Over both growing seasons, 91% of isolates were identified as the 15ADON chemotype while 9% of isolates were identified as the 3ADON chemotype. Aggressiveness was quantified by area under disease progress curve (AUDPC). The isolates with the highest AUDPC values were from the highest wheat producing cropping districts in the state. Deoxynivalenol production in grain and sporulation and growth rate in vitro were compared to aggressiveness in the greenhouse. Our results showed that 3ADON isolates in Wisconsin were among the highest in sporulation capacity, growth rate, and DON production in grain. However, there were no significant differences in aggressiveness between the 3ADON and 15ADON isolates. The results of this research detail the baseline frequency and distribution of 3ADON and 15ADON chemotypes observed in Wisconsin. Chemotype distributions within populations of F. graminearum in Wisconsin should continue to be monitored in the future.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2281 ◽  
Author(s):  
Anne-Katrin Mahlein ◽  
Elias Alisaac ◽  
Ali Al Masri ◽  
Jan Behmann ◽  
Heinz-Wilhelm Dehne ◽  
...  

Optical sensors have shown high capabilities to improve the detection and monitoring of plant disease development. This study was designed to compare the feasibility of different sensors to characterize Fusarium head blight (FHB) caused by Fusarium graminearum and Fusarium culmorum. Under controlled conditions, time-series measurements were performed with infrared thermography (IRT), chlorophyll fluorescence imaging (CFI), and hyperspectral imaging (HSI) starting 3 days after inoculation (dai). IRT allowed the visualization of temperature differences within the infected spikelets beginning 5 dai. At the same time, a disorder of the photosynthetic activity was confirmed by CFI via maximal fluorescence yields of spikelets (Fm) 5 dai. Pigment-specific simple ratio PSSRa and PSSRb derived from HSI allowed discrimination between Fusarium-infected and non-inoculated spikelets 3 dai. This effect on assimilation started earlier and was more pronounced with F. graminearum. Except the maximum temperature difference (MTD), all parameters derived from different sensors were significantly correlated with each other and with disease severity (DS). A support vector machine (SVM) classification of parameters derived from IRT, CFI, or HSI allowed the differentiation between non-inoculated and infected spikelets 3 dai with an accuracy of 78, 56 and 78%, respectively. Combining the IRT-HSI or CFI-HSI parameters improved the accuracy to 89% 30 dai.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 943 ◽  
Author(s):  
Beata Toth ◽  
Andrea Gyorgy ◽  
Monika Varga ◽  
Akos Mesterhazy

In previous research, conidium concentrations varying between 10,000 and 1,000,000/mL have not been related to any aggressiveness test. Therefore, two Fusarium graminearum and two Fusarium culmorum isolates were tested in the field on seven genotypes highly differing in resistance at no dilution, and 1:1, 1:2, 1:4, 1:8, and 1:16 dilutions in two years (2013 and 2014). The isolates showed different aggressiveness, which changed significantly at different dilution rates for disease index (DI), Fusarium-damaged kernels (FDK), and deoxynivalenol (DON). The traits also had diverging responses to the infection. The effect of the dilution could not be forecasted. The genotype ranks also varied. Dilution seldomly increased aggressiveness, but often lower aggressiveness occurred at high variation. The maximum and minimum values varied between 15% and 40% for traits and dilutions. The reductions between the non-diluted and diluted values (total means) for DI ranged from 6% and 33%, for FDK 8.3–37.7%, and for DON 5.8–44.8%. The most sensitive and most important trait was DON. The introduction of the aggressiveness test provides improved regulation compared to the uncontrolled manipulation of the conidium concentration. The use of more isolates significantly increases the credibility of phenotyping in genetic and cultivar registration studies.


2011 ◽  
Vol 47 (No. 2) ◽  
pp. 58-63 ◽  
Author(s):  
J. Chrpová ◽  
V. Šíp ◽  
L. Štočková ◽  
L. Stemberková ◽  
L. Tvarůžek

Fusarium head blight (FHB) is a fungal disease causing substantial yield and quality losses in barley. Genetic variation in deoxynivalenol (DON) content and and important yield traits in response to FHB were studied in 44 spring barley cultivars for two years following artificial inoculation with Fusarium culmorum under field conditions. The analysis of variance revealed that the largest effect on DON content and simultaneously on the reduction of thousand grain weight and grain weight per spike were due to the environmental conditions of the year, while the visual disease symptoms depended on the cultivars to a larger extent. All these traits were significantly interrelated. The most resistant cultivars Murasski mochi, Nordic, Krasnodarskij 35, Krasnodarskij 95, Nordus, and Usurijskij 8, together with the resistant check Chevron, showed the lowest DON content, the lowest expression of disease symptoms and the lowest reduction of TGW and GWS. However, most spring barley cultivars registered in the Czech Republic in recent years expressed susceptibility or medium resistance and were considerably affected by the disease. This increases the importance of breeding barley for resistance to FHB.


1999 ◽  
Vol 35 (No. 2) ◽  
pp. 63-66
Author(s):  
Y. Tak sh ◽  
S. Vaverka

Fungicides were tested in 1996 and 1997 for their efficacy to control Fusarium culmorum after inoculation of winter wheat in the early flowering stage. The best results were achieved with metconazole and a mixture of tebuconazole with triadimefon or triadi­ menol. Good results were achieved with epoxiconazole, cyproconazole, flusilazol and bromuconazole.


2005 ◽  
Vol 54 (2) ◽  
pp. 156-160 ◽  
Author(s):  
J. M. Brennan ◽  
D. Egan ◽  
B. M. Cooke ◽  
F. M. Doohan

2017 ◽  
Vol 103 ◽  
pp. 34-41 ◽  
Author(s):  
Imane Laraba ◽  
Houda Boureghda ◽  
Nora Abdallah ◽  
Oussama Bouaicha ◽  
Friday Obanor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document