scholarly journals Horizon Areas and Logarithmic Correction to the Charged Accelerating Black Hole Entropy

Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 57 ◽  
Author(s):  
Parthapratim Pradhan

It has been shown by explicit and exact calculation that the geometric product formula i.e., area (or entropy) product formula of outer horizon ( H + ) and inner horizon ( H - ) for charged accelerating black hole (BH) should neither be mass-independent nor quantized. This implies that the area (or entropy ) product is mass-independent conjecture has been broken down for charged accelerating BH. This also further implies that the mass-independent feature of the area product of H ± is not a generic feature at all. We also compute the Cosmic-Censorship-Inequality for this BH. Moreover, we compute the specific heat for this BH to determine the local thermodynamic stability. Under certain criterion, the BH shows the second order phase transition. Furthermore, we compute logarithmic corrections to the entropy for the said BH due to small statistical fluctuations around the thermal equilibrium.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Parthapratim Pradhan

We examine the logarithmic corrections to the black hole (BH) entropy product formula of outer horizon and inner horizon by taking into account the effects of statistical quantum fluctuations around the thermal equilibrium and via conformal field theory (CFT). We argue that, in logarithmic corrections to the BH entropy product formula when calculated using CFT and taking into account the effects of quantum fluctuations around the thermal equilibrium, the formula should not be universal and it also should not be quantized. These results have been explicitly checked by giving several examples.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Sudip Karan ◽  
Binata Panda

Abstract We calculate the first three Seeley-DeWitt coefficients for fluctuation of the massless fields of a $$ \mathcal{N} $$ N = 2 Einstein-Maxwell supergravity theory (EMSGT) distributed into different multiplets in d = 4 space-time dimensions. By utilizing the Seeley-DeWitt data in the quantum entropy function formalism, we then obtain the logarithmic correction contribution of individual multiplets to the entropy of extremal Kerr-Newman family of black holes. Our results allow us to find the logarithmic entropy corrections for the extremal black holes in a fully matter coupled $$ \mathcal{N} $$ N = 2, d = 4 EMSGT, in a particular class of $$ \mathcal{N} $$ N = 1, d = 4 EMSGT as consistent decomposition of $$ \mathcal{N} $$ N = 2 multiplets ($$ \mathcal{N} $$ N = 2 → $$ \mathcal{N} $$ N = 1) and in $$ \mathcal{N} $$ N ≥ 3, d = 4 EMSGTs by decomposing them into $$ \mathcal{N} $$ N = 2 multiplets ($$ \mathcal{N} $$ N ≥ 3 → $$ \mathcal{N} $$ N = 2). For completeness, we also obtain logarithmic entropy correction results for the non-extremal Kerr-Newman black holes in the matter coupled $$ \mathcal{N} $$ N ≥ 1, d = 4 EMSGTs by employing the same Seeley-DeWitt data into a different Euclidean gravity approach developed in [17].


2003 ◽  
Vol 18 (19) ◽  
pp. 3395-3416 ◽  
Author(s):  
Shin'ichi Nojiri ◽  
Sergei D. Odintsov ◽  
Sachiko Ogushi

Thermodynamics of 5d SdS black hole is considered. Thermal fluctuations define the (sub-dominant) logarithmic corrections to black hole entropy and then to Cardy–Verlinde formula and to FRW brane cosmology. We demonstrate that logarithmic terms (which play the role of effective cosmological constant) change the behavior of 4d spherical brane in dS, SdS or Nariai bulk. In particularly, bounce Universe occurs or 4d dS brane expands to its maximum and then shrinks. The entropy bounds are also modified by next-to-leading terms. Out of braneworld context the logarithmic terms may suggest slight modification of standard FRW cosmology.


2018 ◽  
Vol 2018 (5) ◽  
Author(s):  
Alejandra Castro ◽  
Victor Godet ◽  
Finn Larsen ◽  
Yangwenxiao Zeng

Sign in / Sign up

Export Citation Format

Share Document