scholarly journals A Table-Top Pilot Experiment for Narrow Mass Range Light Cold Dark Matter Particle Searches

Universe ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 28
Author(s):  
Masroor H. S. Bukhari

This report presents the detection framework and a proposal for a pilot table-top experiment (supported by simulations and preliminary test results) for adoption into narrow mass range light Cold Dark Matter (CDM) searches, specifically for axions or Axion-Like Particles (ALPs) in a resonant cavity-based scheme. The novelty of this proposal lies in an attempt to concentrate searches corresponding to specific axion masses of interest (coinciding with recent proposals), using multiple cavities in a symmetric scheme, instead of using noisy and complicated tuning mechanisms, and in reduction of associated hardware by employing simpler underlying instrumentation instead of heterodyne mode of detection, by means of a low-noise ac amplification and dc phase-sensitive detection scheme, in order to make a viable and compact table-top experiment possible. These simplifications could possibly be valuable in substantially reducing detection hardware, experiment complexities (and associated noise) and long run-times, while maintaining low noise similar to conventional axion searches. The feasibility of proposed scheme and the experiment design are demonstrated with some calculations, simulations and preliminary tests with artificial axion signals injected into the cavities. The technique and ideas reported here have significant potential to be developed into a small-scale table-top, narrow-range, dark matter axion/ALP spectroscopy experiment, in addition to aiding in the on-going resonant cavity-based and broadband experiments.

2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Masroor H. S. Bukhari ◽  
Zahoor H. Shah

A resonance detection scheme and some useful ideas for cavity-based searches of light cold dark matter particles (such as axions) are presented, as an effort to aid in the on-going endeavors in this direction as well as for future experiments, especially in possibly developing a table-top experiment. The scheme is based on our idea of a resonant detector, incorporating an integrated tunnel diode (TD) and GaAs HEMT/HFET (High-Electron Mobility Transistor/Heterogeneous FET) transistor amplifier, weakly coupled to a cavity in a strong transverse magnetic field. The TD-amplifier combination is suggested as a sensitive and simple technique to facilitate resonance detection within the cavity while maintaining excellent noise performance, whereas our proposed Halbach magnet array could serve as a low-noise and permanent solution replacing the conventional electromagnets scheme. We present some preliminary test results which demonstrate resonance detection from simulated test signals in a small optimal axion mass range with superior signal-to-noise ratios (SNR). Our suggested design also contains an overview of a simpler on-resonance dc signal read-out scheme replacing the complicated heterodyne read-out. We believe that all these factors and our propositions could possibly improve or at least simplify the resonance detection and read-out in cavity-based DM particle detection searches (and other spectroscopy applications) and reduce the complications (and associated costs), in addition to reducing the electromagnetic interference and background.


2007 ◽  
Vol 22 (25n28) ◽  
pp. 2113-2120
Author(s):  
HANG BAE KIM

Light dark matter aims at explaining the 511 keV γ-ray line emission from the galactic bulge as well as cold dark matter in our universe. The former is achieved via the annihilations or decays of light dark matter particles, which implies interesting observational consequences in addition to 511 keV γ-rays. We consider the axino in the 1 ~ 10 MeV mass range as the light dark matter particle and discuss the particle physics models for it, its cosmological production, and its decay arising from R-parity violation. For additional observational signals, we consider the connection to the neutrino data made by bilinear R-parity violations and the continuum γ-ray emission from light dark matter particles.


Galaxies ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 80 ◽  
Author(s):  
Ángeles Moliné ◽  
Jascha A. Schewtschenko ◽  
Miguel A. Sánchez-Conde ◽  
Alejandra Aguirre-Santaella ◽  
Sofía A. Cora ◽  
...  

One possible and natural derivation from the collisionless cold dark matter (CDM) standard cosmological framework is the assumption of the existence of interactions between dark matter (DM) and photons or neutrinos. Such a possible interacting dark matter (IDM) model would imply a suppression of small-scale structures due to a large collisional damping effect, even though the weakly-interacting massive particle (WIMP) can still be the DM candidate. Because of this, IDM models can help alleviate alleged tensions between standard CDM predictions and observations at small mass scales. In this work, we investigate the properties of the DM halo substructure or subhalos formed in a high-resolution cosmological N-body simulation specifically run within these alternative models. We also run its CDM counterpart, which allowed us to compare subhalo properties in both cosmologies. We show that, in the lower mass range covered by our simulation runs, both subhalo concentrations and abundances are systematically lower in IDM compared to the CDM scenario. Yet, as in CDM, we find that median IDM subhalo concentration values increase towards the innermost regions of their hosts for the same mass subhalos. Similarly to CDM, we find IDM subhalos to be more concentrated than field halos of the same mass. Our work has a direct application to studies aimed at the indirect detection of DM where subhalos are expected to boost the DM signal of their host halos significantly. From our results, we conclude that the role of the halo substructure in DM searches will be less important in interacting scenarios than in CDM, but is nevertheless far from being negligible.


2020 ◽  
Vol 501 (1) ◽  
pp. 1539-1556
Author(s):  
Matteo Nori ◽  
Marco Baldi

ABSTRACT Dark matter models involving a very light bosonic particle, generally known as fuzzy dark matter (FDM), have been recently attracting great interest in the cosmology community, as their wave-like phenomenology would simultaneously explain the long-standing misdetection of a dark matter particle and help easing the small-scale issues related to the standard cold dark matter (CDM) scenario. With this work, we initiate a series of papers aiming at investigating the evolution of FDM structures in a cosmological framework performed with our N-body code ax-gadget, detailing for the first time in the literature how the actual scaling relations between solitonic cores and host haloes properties are significantly affected by the dynamical state, morphology, and merger history of the individual systems. In particular, in this first paper we confirm the ability of ax-gadget to correctly reproduce the typical FDM solitonic core and we employ it to study the non-linear evolution of eight FDM haloes in their cosmological context through the zoom-in simulation approach. We find that the scaling relations identified in previous works for isolated systems are generally modified for haloes evolving in a realistic cosmological environment, and appear to be valid only as a limit for the most relaxed and spherically symmetric systems.


Author(s):  
Noam I. Libeskind ◽  
Arianna Di Cintio ◽  
Alexander Knebe ◽  
Gustavo Yepes ◽  
Stefan Gottlöber ◽  
...  

AbstractThe differences between cold dark matter (CDM) and warm dark matter (WDM) in the formation of a group of galaxies are examined by running two identical simulations, where in the WDM case the initial power spectrum has been altered to mimic a 1-keV dark matter particle. The CDM initial conditions were constrained to reproduce at z = 0 the correct local environment within which a ‘Local Group’ (LG) of galaxies may form. Two significant differences between the two simulations are found. While in the CDM case a group of galaxies that resembles the real LG forms, the WDM run fails to reproduce a viable LG, instead forming a diffuse group which is still expanding at z = 0. This is surprising since, due to the suppression of small-scale power in its power spectrum, WDM is naively expected to only affect the collapse of small haloes and not necessarily the dynamics on a scale of a group of galaxies. Furthermore, the concentration of baryons in halo centre is greater in CDM than in WDM and the properties of the discs differ.


1987 ◽  
Vol 117 ◽  
pp. 490-490
Author(s):  
A. K. Drukier ◽  
K. Freese ◽  
D. N. Spergel

We consider the use of superheated superconducting colloids as detectors of weakly interacting galactic halo candidate particles (e.g. photinos, massive neutrinos, and scalar neutrinos). These low temperature detectors are sensitive to the deposition of a few hundreds of eV's. The recoil of a dark matter particle off of a superheated superconducting grain in the detector causes the grain to make a transition to the normal state. Their low energy threshold makes this class of detectors ideal for detecting massive weakly interacting halo particles.We discuss realistic models for the detector and for the galactic halo. We show that the expected count rate (≈103 count/day for scalar and massive neutrinos) exceeds the expected background by several orders of magnitude. For photinos, we expect ≈1 count/day, more than 100 times the predicted background rate. We find that if the detector temperature is maintained at 50 mK and the system noise is reduced below 5 × 10−4 flux quanta, particles with mass as low as 2 GeV can be detected. We show that the earth's motion around the Sun can produce a significant annual modulation in the signal.


2019 ◽  
Vol 485 (2) ◽  
pp. 2861-2876 ◽  
Author(s):  
Benjamin V Church ◽  
Philip Mocz ◽  
Jeremiah P Ostriker

ABSTRACT Although highly successful on cosmological scales, cold dark matter (CDM) models predict unobserved overdense ‘cusps’ in dwarf galaxies and overestimate their formation rate. We consider an ultralight axion-like scalar boson which promises to reduce these observational discrepancies at galactic scales. The model, known as fuzzy dark matter (FDM), avoids cusps, suppresses small-scale power, and delays galaxy formation via macroscopic quantum pressure. We compare the substructure and density fluctuations of galactic dark matter haloes comprised of ultralight axions to conventional CDM results. Besides self-gravitating subhaloes, FDM includes non-virialized overdense wavelets formed by quantum interference patterns, which are an efficient source of heating to galactic discs. We find that, in the solar neighbourhood, wavelet heating is sufficient to give the oldest disc stars a velocity dispersion of ${\sim } {30}{\, \mathrm{km\, s}^{-1}}$ within a Hubble time if energy is not lost from the disc, the velocity dispersion increasing with stellar age as σD ∝ t0.4 in agreement with observations. Furthermore, we calculate the radius-dependent velocity dispersion and corresponding scaleheight caused by the heating of this dynamical substructure in both CDM and FDM with the determination that these effects will produce a flaring that terminates the Milky Way disc at $15\!-\!20{\, \mathrm{kpc}}$. Although the source of thickened discs is not known, the heating due to perturbations caused by dark substructure cannot exceed the total disc velocity dispersion. Therefore, this work provides a lower bound on the FDM particle mass of ma > 0.6 × 10−22 eV. Furthermore, FDM wavelets with this particle mass should be considered a viable mechanism for producing the observed disc thickening with time.


Recent observational and theoretical results on galaxy clustering are reviewed. A major difficulty in relating observations to theory is that the former refer to luminous material whereas the latter is most directly concerned with the gravitationally dominant but invisible dark matter. The simple assumption that the distribution of galaxies generally follows that of the mass appears to conflict with evidence suggesting that galaxies of different kinds are clustered in different ways. If galaxies are indeed biased tracers of the mass, then dynamical estimates of the mean cosmic density, which give Ω « 0.2 may underestimate the global value of Ω. There are now several specific models for the behaviour of density fluctuations from very early times to the present epoch. The late phases of this evolution need to be followed by N -body techniques; simulations of scale-free universes and of universes dominated by various types of elementary particles are discussed. In the former case, the models evolve in a self-similar way; the resulting correlations have a steeper slope than that oberved for the galaxy distribution unless the primordial power spectral index n « 2. Universes dominated by light neutrinos acquire a large coherence length at early times. As a result, an early filamentary phase develops into a present day distribution that is more strongly clustered than observed galaxies and is dominated by a few clumps with masses larger than those of any known object. If the dark matter consists of ‘cold’ particles such as photinos or axions, then structure builds up from subgalactic scales in a roughly hierarchical way. The observed pattern of galaxy clustering can be reproduced if either Ω « 0.2 and the galaxies are distributed as the mass, or if Ω — 1, H 0 = 50 km s -1 Mpc -1 and the galaxies form only at high peaks of the smoothed linear density field. The open model, however, is marginally ruled out by the observed small-scale isotropy of the microwave background, whereas the flat one is consistent with such observations. With no further free parameters a flat cold dark-matter universe produces the correct abundance of rich galaxy clusters and of galactic halos; the latter have flat rotation curves with amplitudes spanning the observed range. Preliminary calculations indicate that the properties of voids may be consistent with the data, but the correlations of rich clusters appear to be somewhat weaker than those reported for Abell clusters.


1996 ◽  
Vol 466 ◽  
pp. 13 ◽  
Author(s):  
Anatoly Klypin ◽  
Joel Primack ◽  
Jon Holtzman

2004 ◽  
Vol 220 ◽  
pp. 91-98 ◽  
Author(s):  
J. E. Taylor ◽  
J. Silk ◽  
A. Babul

Models of structure formation based on cold dark matter predict that most of the small dark matter haloes that first formed at high redshift would have merged into larger systems by the present epoch. Substructure in present-day haloes preserves the remains of these ancient systems, providing the only direct information we may ever have about the low-mass end of the power spectrum. We describe some recent attempts to model halo substructure down to very small masses, using a semi-analytic model of halo formation. We make a preliminary comparison between the model predictions, observations of substructure in lensed systems, and the properties of local satellite galaxies.


Sign in / Sign up

Export Citation Format

Share Document