scholarly journals Simulating Groups and the IntraGroup Medium: The Surprisingly Complex and Rich Middle Ground between Clusters and Galaxies

Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 209
Author(s):  
Benjamin D. Oppenheimer ◽  
Arif Babul ◽  
Yannick Bahé ◽  
Iryna S. Butsky ◽  
Ian G. McCarthy

Galaxy groups are more than an intermediate scale between clusters and halos hosting individual galaxies, they are crucial laboratories capable of testing a range of astrophysics from how galaxies form and evolve to large scale structure (LSS) statistics for cosmology. Cosmological hydrodynamic simulations of groups on various scales offer an unparalleled testing ground for astrophysical theories. Widely used cosmological simulations with ∼(100 Mpc)3 volumes contain statistical samples of groups that provide important tests of galaxy evolution influenced by environmental processes. Larger volumes capable of reproducing LSS while following the redistribution of baryons by cooling and feedback are the essential tools necessary to constrain cosmological parameters. Higher resolution simulations can currently model satellite interactions, the processing of cool (T≈104−5 K) multi-phase gas, and non-thermal physics including turbulence, magnetic fields and cosmic ray transport. We review simulation results regarding the gas and stellar contents of groups, cooling flows and the relation to the central galaxy, the formation and processing of multi-phase gas, satellite interactions with the intragroup medium, and the impact of groups for cosmological parameter estimation. Cosmological simulations provide evolutionarily consistent predictions of these observationally difficult-to-define objects, and have untapped potential to accurately model their gaseous, stellar and dark matter distributions.

2020 ◽  
Vol 15 (S359) ◽  
pp. 188-189
Author(s):  
Daniela Hiromi Okido ◽  
Cristina Furlanetto ◽  
Marina Trevisan ◽  
Mônica Tergolina

AbstractGalaxy groups offer an important perspective on how the large-scale structure of the Universe has formed and evolved, being great laboratories to study the impact of the environment on the evolution of galaxies. We aim to investigate the properties of a galaxy group that is gravitationally lensing HELMS18, a submillimeter galaxy at z = 2.39. We obtained multi-object spectroscopy data using Gemini-GMOS to investigate the stellar kinematics of the central galaxies, determine its members and obtain the mass, radius and the numerical density profile of this group. Our final goal is to build a complete description of this galaxy group. In this work we present an analysis of its two central galaxies: one is an active galaxy with z = 0.59852 ± 0.00007, while the other is a passive galaxy with z = 0.6027 ± 0.0002. Furthermore, the difference between the redshifts obtained using emission and absorption lines indicates an outflow of gas with velocity v = 278.0 ± 34.3 km/s relative to the galaxy.


2020 ◽  
Vol 492 (3) ◽  
pp. 4268-4282 ◽  
Author(s):  
Adam Soussana ◽  
Nora Elisa Chisari ◽  
Sandrine Codis ◽  
Ricarda S Beckmann ◽  
Yohan Dubois ◽  
...  

ABSTRACT The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at $z$ = 0 and $z$ = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.


2008 ◽  
Vol 4 (S254) ◽  
pp. 429-434
Author(s):  
Marie Martig ◽  
Frédéric Bournaud ◽  
Romain Teyssier

AbstractLarge volume cosmological simulations succeed in reproducing the large-scale structure of the Universe. However, they lack resolution and may not take into account all relevant physical processes to test if the detail properties of galaxies can be explained by the CDM paradigm. On the other hand, galaxy-scale simulations could resolve this in a robust way but do not usually include a realistic cosmological context.To study galaxy evolution in cosmological context, we use a new method that consists in coupling cosmological simulations and galactic scale simulations. For this, we record merger and gas accretion histories from cosmological simulations and re-simulate at very high resolution the evolution of baryons and dark matter within the virial radius of a target galaxy. This allows us for example to better take into account gas evolution and associated star formation, to finely study the internal evolution of galaxies and their disks in a realistic cosmological context.We aim at obtaining a statistical view on galaxy evolution from z ≃ 2 to 0, and we present here the first results of the study: we mainly stress the importance of taking into account gas accretion along filaments to understand galaxy evolution.


2021 ◽  
Vol 2021 (12) ◽  
pp. 044
Author(s):  
G. Parimbelli ◽  
G. Scelfo ◽  
S.K. Giri ◽  
A. Schneider ◽  
M. Archidiacono ◽  
...  

Abstract We investigate and quantify the impact of mixed (cold and warm) dark matter models on large-scale structure observables. In this scenario, dark matter comes in two phases, a cold one (CDM) and a warm one (WDM): the presence of the latter causes a suppression in the matter power spectrum which is allowed by current constraints and may be detected in present-day and upcoming surveys. We run a large set of N-body simulations in order to build an efficient and accurate emulator to predict the aforementioned suppression with percent precision over a wide range of values for the WDM mass, Mwdm, and its fraction with respect to the totality of dark matter, fwdm. The suppression in the matter power spectrum is found to be independent of changes in the cosmological parameters at the 2% level for k≲ 10 h/Mpc and z≤ 3.5. In the same ranges, by applying a baryonification procedure on both ΛCDM and CWDM simulations to account for the effect of feedback, we find a similar level of agreement between the two scenarios. We examine the impact that such suppression has on weak lensing and angular galaxy clustering power spectra. Finally, we discuss the impact of mixed dark matter on the shape of the halo mass function and which analytical prescription yields the best agreement with simulations. We provide the reader with an application to galaxy cluster number counts.


2019 ◽  
Vol 490 (2) ◽  
pp. 2606-2626 ◽  
Author(s):  
Hao-Yi Wu ◽  
David H Weinberg ◽  
Andrés N Salcedo ◽  
Benjamin D Wibking ◽  
Ying Zu

ABSTRACT Next-generation optical imaging surveys will revolutionize the observations of weak gravitational lensing by galaxy clusters and provide stringent constraints on growth of structure and cosmic acceleration. In these experiments, accurate modelling of covariance matrices of cluster weak lensing plays the key role in obtaining robust measurements of the mean mass of clusters and cosmological parameters. We use a combination of analytical calculations and high-resolution N-body simulations to derive accurate covariance matrices that span from the virial regime to linear scales of the cluster-matter cross-correlation. We validate this calculation using a public ray-tracing lensing simulation and provide a software package for calculating covariance matrices for a wide range of cluster and source sample choices. We discuss the relative importance of shape noise and density fluctuations, the impact of radial bin size, and the impact of off-diagonal elements. For a weak lensing source density ns = 10 arcmin−2, shape noise typically dominates the variance on comoving scales $r_{\rm p}\lesssim 5\ h^{-1} \, \rm Mpc$. However, for ns = 60 arcmin−2, potentially achievable with future weak lensing experiments, density fluctuations typically dominate the variance at $r_{\rm p}\gtrsim 1\ h^{-1} \, \rm Mpc$ and remain comparable to shape noise on smaller scales.


2020 ◽  
Vol 500 (4) ◽  
pp. 5056-5071 ◽  
Author(s):  
Antonio Ragagnin ◽  
Alexandro Saro ◽  
Priyanka Singh ◽  
Klaus Dolag

ABSTRACT We employ a set of Magneticum cosmological hydrodynamic simulations that span over 15 different cosmologies, and extract masses and concentrations of all well-resolved haloes between z = 0 and 1 for critical overdensities $\Delta _\textrm {vir}, \Delta _{200c}, \Delta _{500c}, \Delta _{2500c}$ and mean overdensity Δ200m. We provide the first mass–concentration (Mc) relation and sparsity relation (i.e. MΔ1 − MΔ2 mass conversion) of hydrodynamic simulations that is modelled by mass, redshift, and cosmological parameters Ωm, Ωb, σ8, h0 as a tool for observational studies. We also quantify the impact that the Mc relation scatter and the assumption of Navarro–Frank–White (NFW) density profiles have on the uncertainty of the sparsity relation. We find that converting masses with the aid of an Mc relation carries an additional fractional scatter ($\approx 4{{\ \rm per\ cent}}$) originated from deviations from the assumed NFW density profile. For this reason, we provide a direct mass–mass conversion relation fit that depends on redshift and cosmological parameters. We release the package hydro_mc, a python tool that perform all kind of conversions presented in this paper.


2020 ◽  
Vol 644 ◽  
pp. A108
Author(s):  
Lyne Van de Vyvere ◽  
Dominique Sluse ◽  
Sampath Mukherjee ◽  
Dandan Xu ◽  
Simon Birrer

Strong gravitational lensing is a powerful tool to measure cosmological parameters and to study galaxy evolution mechanisms. However, quantitative strong lensing studies often require mock observations. To capture the full complexity of galaxies, the lensing galaxy is often drawn from high resolution, dark matter only or hydro-dynamical simulations. These have their own limitations, but the way we use them to emulate mock lensed systems may also introduce significant artefacts. In this work we identify and explore the specific impact of mass truncation on simulations of strong lenses by applying different truncation schemes to a fiducial density profile with conformal isodensity contours. Our main finding is that improper mass truncation can introduce undesired artificial shear. The amplitude of the spurious shear depends on the shape and size of the truncation area as well as on the slope and ellipticity of the lens density profile. Due to this effect, the value of H0 or the shear amplitude inferred by modelling those systems may be biased by several percents. However, we show that the effect becomes negligible provided that the lens projected map extends over at least 50 times the Einstein radius.


2019 ◽  
Vol 487 (4) ◽  
pp. 5739-5752 ◽  
Author(s):  
Jacob Seiler ◽  
Anne Hutter ◽  
Manodeep Sinha ◽  
Darren Croton

Abstract One of the most important parameters in characterizing the Epoch of Reionization, the escape fraction of ionizing photons, fesc, remains unconstrained both observationally and theoretically. With recent work highlighting the impact of galaxy-scale feedback on the instantaneous value of fesc, it is important to develop a model in which reionization is self-consistently coupled to galaxy evolution. In this work, we present such a model and explore how physically motivated functional forms of fesc affect the evolution of ionized hydrogen within the intergalactic medium. Using the 21 cm power spectrum evolution, we investigate the likelihood of observationally distinguishing between a constant fesc and other models that depend upon different forms of galaxy feedback. We find that changing the underlying connection between fesc and galaxy feedback drastically alters the large-scale 21 cm power. The upcoming Square Kilometre Array Low Frequency instrument possesses the sensitivity to differentiate between our models at a fixed optical depth, requiring only 200 h of integration time focused on redshifts z = 7.5–8.5. Generalizing these results to account for a varying optical depth will require multiple 800 h observations spanning redshifts z = 7–10. This presents an exciting opportunity to observationally constrain one of the most elusive parameters during the Epoch of Reionization.


2019 ◽  
Vol 488 (3) ◽  
pp. 3340-3357 ◽  
Author(s):  
Matthew Fong ◽  
Miyoung Choi ◽  
Victoria Catlett ◽  
Brandyn Lee ◽  
Austin Peel ◽  
...  

ABSTRACT We study the impact of baryonic processes and massive neutrinos on weak lensing peak statistics that can be used to constrain cosmological parameters. We use the BAHAMAS suite of cosmological simulations, which self-consistently include baryonic processes and the effect of massive neutrino free-streaming on the evolution of structure formation. We construct synthetic weak lensing catalogues by ray tracing through light-cones, and use the aperture mass statistic for the analysis. The peaks detected on the maps reflect the cumulative signal from massive bound objects and general large-scale structure. We present the first study of weak lensing peaks in simulations that include both baryonic physics and massive neutrinos (summed neutrino mass Mν = 0.06, 0.12, 0.24, and 0.48 eV assuming normal hierarchy), so that the uncertainty due to physics beyond the gravity of dark matter can be factored into constraints on cosmological models. Assuming a fiducial model of baryonic physics, we also investigate the correlation between peaks and massive haloes, over a range of summed neutrino mass values. As higher neutrino mass tends to suppress the formation of massive structures in the Universe, the halo mass function and lensing peak counts are therefore modified as a function of Mν. Over most of the S/N range, the impact of fiducial baryonic physics is greater (less) than neutrinos for 0.06 and 0.12 (0.24 and 0.48) eV models. Both baryonic physics and massive neutrinos should be accounted for when deriving cosmological parameters from weak lensing observations.


2020 ◽  
Vol 501 (1) ◽  
pp. 62-77
Author(s):  
A Nuñez-Castiñeyra ◽  
E Nezri ◽  
J Devriendt ◽  
R Teyssier

ABSTRACT The interplay of star formation (SF) and supernova (SN) feedback in galaxy formation is a key element for understanding galaxy evolution. Since these processes occur at small scales, it is necessary to have sub-grid models that recover their evolution and environmental effects at the scales reached by cosmological simulations. In this work, we present the results of the Mochima simulation, where we simulate the same spiral galaxy inhabiting a Milky Way (MW) size halo in a cosmological environment changing the sub-grid models for SN feedback and SF. We test combinations of the Schmidt law and a multifreefall based SF with delayed cooling feedback or mechanical feedback. We reach a resolution of 35 pc in a zoom-in box of 36 Mpc. For this, we use the code $\rm{\small RAMSES}$ with the implementation of gas turbulence in time and trace the local hydrodynamical features of the star-forming gas. Finally, we compare the galaxies at redshift 0 with global and interstellar medium observations in the MW and local spiral galaxies. The simulations show successful comparisons with observations. Nevertheless, diverse galactic morphologies are obtained from different numerical implementations. We highlight the importance of detailed modelling of the SF and feedback processes, especially for simulations with a resolution that start to reach scales relevant for molecular cloud physics. Future improvements could alleviate the degeneracies exhibited in our simulated galaxies under different sub-grid models.


Sign in / Sign up

Export Citation Format

Share Document