scholarly journals Analog Particle Production Model for General Classes of Taub-NUT Black Holes

Universe ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 350
Author(s):  
Joshua Foo ◽  
Michael R. R. Good ◽  
Robert B. Mann

We derive a correspondence between the Hawking radiation spectra emitted from general classes of Taub-NUT black holes with that induced by the relativistic motion of an accelerated Dirichlet boundary condition (i.e., a perfectly reflecting mirror) in (1+1)-dimensional flat spacetime. We demonstrate that the particle and energy spectra is thermal at late times and that particle production is suppressed by the NUT parameter. We also compute the radiation spectrum in the rotating, electrically charged (Kerr–Newman) Taub-NUT scenario, and the extremal case, showing, explicitly, how these parameters affect the outgoing particle and energy fluxes.

2021 ◽  
Vol 103 (4) ◽  
Author(s):  
João M. S. Oliveira ◽  
Alexandre M. Pombo

2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Georgios K. Karananas ◽  
Alex Kehagias ◽  
John Taskas

Abstract We derive a novel four-dimensional black hole with planar horizon that asymptotes to the linear dilaton background. The usual growth of its entanglement entropy before Page’s time is established. After that, emergent islands modify to a large extent the entropy, which becomes finite and is saturated by its Bekenstein-Hawking value in accordance with the finiteness of the von Neumann entropy of eternal black holes. We demonstrate that viewed from the string frame, our solution is the two-dimensional Witten black hole with two additional free bosons. We generalize our findings by considering a general class of linear dilaton black hole solutions at a generic point along the σ-model renormalization group (RG) equations. For those, we observe that the entanglement entropy is “running” i.e. it is changing along the RG flow with respect to the two-dimensional worldsheet length scale. At any fixed moment before Page’s time the aforementioned entropy increases towards the infrared (IR) domain, whereas the presence of islands leads the running entropy to decrease towards the IR at later times. Finally, we present a four-dimensional charged black hole that asymptotes to the linear dilaton background as well. We compute the associated entanglement entropy for the extremal case and we find that an island is needed in order for it to follow the Page curve.


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


2015 ◽  
Vol 24 (12) ◽  
pp. 1544007 ◽  
Author(s):  
Shahar Hod

The holographic principle has taught us that, as far as their entropy content is concerned, black holes in (3 + 1)-dimensional curved spacetimes behave as ordinary thermodynamic systems in flat (2 + 1)-dimensional spacetimes. In this paper, we point out that the opposite behavior can also be observed in black-hole physics. To show this we study the quantum Hawking evaporation of near-extremal Reissner–Nordström (RN) black holes. We first point out that the black-hole radiation spectrum departs from the familiar radiation spectrum of genuine (3 + 1)-dimensional perfect black-body emitters. In particular, the would be black-body thermal spectrum is distorted by the curvature potential which surrounds the black-hole and effectively blocks the emission of low-energy quanta. Taking into account the energy-dependent gray-body factors which quantify the imprint of passage of the emitted radiation quanta through the black-hole curvature potential, we reveal that the (3 + 1)-dimensional black holes effectively behave as perfect black-body emitters in a flat (9 + 1)-dimensional spacetime.


2003 ◽  
Vol 68 (8) ◽  
Author(s):  
Subharthi Ray ◽  
Aquino L. Espíndola ◽  
Manuel Malheiro ◽  
José P. S. Lemos ◽  
Vilson T. Zanchin

2011 ◽  
Vol 28 (8) ◽  
pp. 085003 ◽  
Author(s):  
Owen Pavel Fernandez Piedra ◽  
Jeferson de Oliveira

Sign in / Sign up

Export Citation Format

Share Document