scholarly journals NuFIT: Three-Flavour Global Analyses of Neutrino Oscillation Experiments

Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 459
Author(s):  
Maria Concepcion Gonzalez-Garcia ◽  
Michele Maltoni ◽  
Thomas Schwetz

In this contribution, we summarise the determination of neutrino masses and mixing arising from global analysis of data from atmospheric, solar, reactor, and accelerator neutrino experiments performed in the framework of three-neutrino mixing and obtained in the context of the NuFIT collaboration. Apart from presenting the latest status as of autumn 2021, we discuss the evolution of global-fit results over the last 10 years, and mention various pending issues (and their resolution) that occurred during that period in the global analyses.

2005 ◽  
Vol 20 (01) ◽  
pp. 1-17 ◽  
Author(s):  
OLGA MENA

We review the present understanding of neutrino masses and mixings, discussing what are the unknowns in the three-family oscillation scenario. Despite the anticipated success coming from the planned long baseline neutrino experiments in unraveling the leptonic mixing sector, there are two important unknowns which may remain obscure: the mixing angle θ13 and the CP-phase δ. The measurement of these two parameters has led us to consider the combination of superbeams and neutrino factories as the key to unveil the neutrino oscillation picture.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
P. F. de Salas ◽  
D. V. Forero ◽  
S. Gariazzo ◽  
P. Martínez-Miravé ◽  
O. Mena ◽  
...  

Abstract We present an updated global fit of neutrino oscillation data in the simplest three-neutrino framework. In the present study we include up-to-date analyses from a number of experiments. Concerning the atmospheric and solar sectors, besides the data considered previously, we give updated analyses of IceCube DeepCore and Sudbury Neutrino Observatory data, respectively. We have also included the latest electron antineutrino data collected by the Daya Bay and RENO reactor experiments, and the long-baseline T2K and NOνA measurements, as reported in the Neutrino 2020 conference. All in all, these new analyses result in more accurate measurements of θ13, θ12, $$ \Delta {m}_{21}^2 $$ Δ m 21 2 and $$ \left|\Delta {m}_{31}^2\right| $$ Δ m 31 2 . The best fit value for the atmospheric angle θ23 lies in the second octant, but first octant solutions remain allowed at ∼ 2.4σ. Regarding CP violation measurements, the preferred value of δ we obtain is 1.08π (1.58π) for normal (inverted) neutrino mass ordering. The global analysis still prefers normal neutrino mass ordering with 2.5σ statistical significance. This preference is milder than the one found in previous global analyses. These new results should be regarded as robust due to the agreement found between our Bayesian and frequentist approaches. Taking into account only oscillation data, there is a weak/moderate preference for the normal neutrino mass ordering of 2.00σ. While adding neutrinoless double beta decay from the latest Gerda, CUORE and KamLAND-Zen results barely modifies this picture, cosmological measurements raise the preference to 2.68σ within a conservative approach. A more aggressive data set combination of cosmological observations leads to a similar preference for normal with respect to inverted mass ordering, namely 2.70σ. This very same cosmological data set provides 2σ upper limits on the total neutrino mass corresponding to Σmν< 0.12 (0.15) eV in the normal (inverted) neutrino mass ordering scenario. The bounds on the neutrino mixing parameters and masses presented in this up-to-date global fit analysis include all currently available neutrino physics inputs.


2012 ◽  
Vol 27 (08) ◽  
pp. 1230010 ◽  
Author(s):  
C. MARIANI

In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, DOUBLE CHOOZ, DAYA BAY and RENO and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a nonzero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future.


2004 ◽  
Vol 19 (38) ◽  
pp. 2799-2813 ◽  
Author(s):  
ANDRÉ DE GOUVÊA

In this brief review, we discuss the new physics unveiled by neutrino oscillation experiments over the past several years, and discuss several attempts at understanding the mechanism behind neutrino masses and lepton mixing. It is fair to say that, while significant theoretical progress has been made, we are yet to construct a coherent picture that naturally explains nonzero, yet tiny, neutrino masses and the newly revealed, puzzling patterns of lepton mixing. We discuss what the challenges are, and point to the fact that more experimental input (from both neutrino and "non-neutrino" experiments) is dearly required – and that new data is expected to reveal, in the next several years, new information. Finally, we draw attention to the fact that neutrinos may have only just begun to reshape fundamental physics, given the fact that we are yet to explain the LSND anomaly and because the neutrino oscillation phenomenon is ultimately sensitive to very small new-physics effects.


2020 ◽  
Vol 35 (22) ◽  
pp. 2050181
Author(s):  
V. V. Vien ◽  
D. P. Khoi

We propose a [Formula: see text] Standard Model (SM) extension based on [Formula: see text] symmetry in which neutrino mass orderings and the tiny neutrino masses are produced by the type-I seesaw mechanism. The obtained physical parameters are well consistent with the global fit of neutrino oscillation.1 The model is predictive in the sense that it reproduces the experimental values of neutrino parameters. Two of the predicted parameters have little deviations from the best-fit values given in Ref. 1, however they are consistent with the other experimental results.[Formula: see text]


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
C. Giunti ◽  
A. Ioannisian ◽  
G. Ranucci

Abstract We present the results of a new analysis of the data of the MiniBooNE experiment taking into account the additional background of photons from ∆+/0 decay proposed in ref. [1] and additional contributions due to coherent photon emission, incoherent production of higher mass resonances, and incoherent non-resonant nucleon production. We show that the new background can explain part of the MiniBooNE low-energy excess and the statistical significance of the MiniBooNE indication in favor of short-baseline neutrino oscillation decreases from 5.1σ to 3.6σ. We also consider the implications for short-baseline neutrino oscillations in the 3+1 active-sterile neutrino mixing framework. We show that the new analysis of the MiniBooNE data indicates smaller active-sterile neutrino mixing and may lead us towards a solution of the appearance-disappearance tension in the global fit of short-baseline neutrino oscillation data.


2000 ◽  
Vol 15 (05) ◽  
pp. 625-650 ◽  
Author(s):  
S. M. BILENKY ◽  
C. GIUNTI ◽  
C. W. KIM

The present status of the problem of neutrino mass, mixing and neutrino oscillations is briefly summarized. The evidence for oscillations of atmospheric neutrinos found recently in the Super-Kamiokande experiment is discussed. Indications in favor of neutrino oscillations obtained in solar neutrino experiments and in the accelerator LSND experiment are also considered. Implications of existing neutrino oscillation data for neutrino masses and mixing are discussed.


2017 ◽  
Vol 32 (16) ◽  
pp. 1742004
Author(s):  
Jue Zhang ◽  
Shun Zhou

In light of the latest neutrino data, we revisit a minimal seesaw model with the Frampton–Glashow–Yanagida ansatz. Renormalization-group running effects on neutrino masses and flavor mixing parameters are discussed and found to essentially have no impact on testing such a minimal scenario in low-energy neutrino experiments. However, since renormalization-group running can modify neutrino mixing parameters at high energies, it does affect the leptogenesis mechanism, which is responsible for the observed matter–antimatter asymmetry in our Universe. Furthermore, to ease the conflict between the naturalness argument and the successful leptogenesis, a special regime for resonant leptogenesis is also emphasized.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Chang Dong Shin ◽  
Kyung Kwang Joo

For over fifty years, reactor experiments have played an important role in neutrino physics, in both discoveries and precision measurements. One of the methods to verify the existence of neutrino is the observation of neutrino oscillation phenomena. Electron antineutrinos emitted from a reactor provide the measurement of the small mixing angleθ13, providing rich programs of neutrino properties, detector development, nuclear monitoring, and application. Using reactor neutrinos, future reactor neutrino experiments, more precise measurements ofθ12,  Δm122, and mass hierarchy will be explored. The precise measurement ofθ13would be crucial for measuring the CP violation parameters at accelerators. Therefore, reactor neutrino physics will assist in the complete understanding of the fundamental nature and implications of neutrino masses and mixing. In this paper, we investigated several characteristics of RENO-50, which is a future medium-baseline reactor neutrino oscillation experiment, by using the GloBES simulation package.


2020 ◽  
Vol 240 ◽  
pp. 02002
Author(s):  
Jianlong Lu ◽  
Aik Hui Chan ◽  
Choo Hiap Oh

We discuss an alternative picture of neutrino oscillation. In this phenomenological model, the flavor-changing phenomena of massless neutrinos arise from scattering processes between neutrinos and four types of undetected spin-0 massive particles pervading throughout the Universe, instead of neutrinos’ own nature. These scattering processes are kinematically similar to Compton scattering. One type of left-handed massless sterile neutrino is needed in order to reproduce the neutrino oscillation modes predicted in the theory of neutrino mixing. Implications of our model include the existence of sterile neu- trinos, the nonconservation of active neutrinos, the possible mismatch among three neutrino mass squared differences ∆m2ij interpreted in the theory of neutrino mixing, the spacetime dependence of neutrino oscillation, and the impossibility of neutrinoless double beta decay. Several important open problems in neutrino physics become trivial or less severe in our model, such as the smallness of neutrino masses, neutrino mass hierarchy, the mechanism responsible for neutrino masses, and the Dirac/Majorana nature of neutrinos.


Sign in / Sign up

Export Citation Format

Share Document