scholarly journals Fusogenicity of the Ghana Virus (Henipavirus: Ghanaian bat henipavirus) Fusion Protein is Controlled by the Cytoplasmic Domain of the Attachment Glycoprotein

Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 800
Author(s):  
Kathleen Voigt ◽  
Markus Hoffmann ◽  
Jan Felix Drexler ◽  
Marcel Alexander Müller ◽  
Christian Drosten ◽  
...  

The Ghana virus (GhV) is phylogenetically related to the zoonotic henipaviruses Nipah (NiV) and Hendra virus. Although GhV uses the highly conserved receptor ephrin-B2, the fusogenicity is restricted to cell lines of bat origin. Furthermore, the surface expression of the GhV attachment glycoprotein (G) is reduced compared to NiV and most of this protein is retained in the endoplasmic reticulum (ER). Here, we generated truncated as well as chimeric GhV G proteins and investigated the influence of the structural domains (cytoplasmic tail, transmembrane domain, ectodomain) of this protein on the intracellular transport and the fusogenicity following coexpression with the GhV fusion protein (F). We demonstrate that neither the cytoplasmic tail nor the transmembrane domain is responsible for the intracellular retention of GhV G. Furthermore, the cytoplasmic tail of GhV G modulates the fusogenicity of GhV F and therefore controls the species-restricted fusogenicity of the GhV surface glycoproteins.

2017 ◽  
Vol 91 (14) ◽  
Author(s):  
Nicolás Cifuentes-Muñoz ◽  
Weina Sun ◽  
Greeshma Ray ◽  
Phuong Tieu Schmitt ◽  
Stacy Webb ◽  
...  

ABSTRACT Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites. IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between glycoprotein trafficking and paramyxovirus assembly.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 480 ◽  
Author(s):  
Yaohui Li ◽  
Ruihua Li ◽  
Meirong Wang ◽  
Yujiao Liu ◽  
Ying Yin ◽  
...  

The genus Henipavirus (HNVs) includes two fatal viruses, namely Nipah virus (NiV) and Hendra virus (HeV). Since 1994, NiV and HeV have been endemic to the Asia–Pacific region and responsible for more than 600 cases of infections. Two emerging HNVs, Ghana virus (GhV) and Mojiang virus (MojV), are speculated to be associated with unrecognized human diseases in Africa and China, respectively. Despite many efforts to develop vaccines against henipaviral diseases, there is presently no licensed human vaccine. As HNVs are highly pathogenic and diverse, it is necessary to develop universal vaccines to prevent future outbreaks. The attachment enveloped glycoprotein (G protein) of HNVs mediates HNV attachment to the host cell’s surface receptors. G proteins have been used as a protective antigen in many vaccine candidates for HNVs. We performed quantitative studies on the antibody responses elicited by the G proteins of NiV, HeV, GhV, and MojV. We found that the G proteins of NiV and HeV elicited only a limited cross-reactive antibody response. Further, there was no cross-protection between MojV, GhV, and highly pathogenic HNVs. We then constructed a bivalent vaccine where the G proteins of NiV and HeV were fused with the human IgG1 Fc domain. The immunogenicity of the bivalent vaccine was compared with that of monovalent vaccines. Our results revealed that the Fc-based bivalent vaccine elicited a potent antibody response against both NiV and HeV. We also constructed a tetravalent Fc heterodimer fusion protein that contains the G protein domains of four HNVs. Immunization with the tetravalent vaccine elicited broad antibody responses against NiV, HeV, GhV, and MojV in mice, indicating compatibility among the four antigens in the Fc-fusion protein. These data suggest that our novel bivalent and tetravalent Fc-fusion proteins may be efficient candidates to prevent HNV infection.


1998 ◽  
Vol 72 (5) ◽  
pp. 3554-3559 ◽  
Author(s):  
Masanobu Ohuchi ◽  
Christian Fischer ◽  
Reiko Ohuchi ◽  
Astrid Herwig ◽  
Hans-Dieter Klenk

ABSTRACT The hemagglutinin (HA) of fowl plague virus was lengthened and shortened by site-specific mutagenesis at the cytoplasmic tail, and the effects of these modifications on HA functions were analyzed after expression from a simian virus 40 vector. Elongation of the tail by the addition of one to six histidine (His) residues did not interfere with intracellular transport, glycosylation, proteolytic cleavage, acylation, cell surface expression, and hemadsorption. However, the ability to induce syncytia at a low pH decreased dramatically depending on the number of His residues added. Partial fusion (hemifusion), assayed by fluorescence transfer from octadecylrhodamine-labeled erythrocyte membranes, was also reduced, but even with the mutant carrying six His residues, significant transfer was observed. However, when the formation of fusion pores was examined with hydrophilic fluorescent calcein, transfer from erythrocytes to HA-expressing cells was not observed with the mutant carrying six histidine residues. The addition of different amino acids to the cytoplasmic tail of HA caused an inhibitory effect similar to that caused by the addition of His. On the other hand, a mutant lacking the cytoplasmic tail was still able to fuse at a reduced level. These results demonstrate that elongation of the cytoplasmic tail interferes with the formation and enlargement of fusion pores. Thus, the length of the cytoplasmic tail plays a critical role in the fusion process.


1989 ◽  
Vol 92 (4) ◽  
pp. 633-642
Author(s):  
J.K. Burkhardt ◽  
Y. Argon

The appearance of newly synthesized glycoprotein (G) of vesicular stomatitis virus at the surface of infected BHK cells is inhibited reversibly by treatment with carbonylcyanide m-chlorophenylhydrazone (CCCP). Under the conditions used, CCCP treatment depleted the cellular ATP levels by 40–60%, consistent with inhibition of transport at energy-requiring stages. The G protein that accumulates in cells treated with CCCP is heterogeneous. Most of it is larger than the newly synthesized G protein, is acylated with palmitic acid, and is resistant to endoglycosidase H (Endo H). Most of the arrested G protein is also sensitive to digestion with neuraminidase, indicating that it has undergone at least partial sialylation. A minority of G protein accumulates under these conditions in a less-mature form, suggesting its inability to reach the mid-Golgi compartment. The oligosaccharides of this G protein are Endo-H-sensitive and seem to be partly trimmed. Whereas sialylated G protein was arrested intracellularly, fucose-labelled G protein was able to complete its transport to the cell surface, indicating that a late CCCP-sensitive step separates sialylation from fucosylation. These post-translational modifications indicate that G protein can be transported as far as the trans-Golgi in the presence of CCCP and is not merely arrested in the endoplasmic reticulum.


2002 ◽  
Vol 8 (2) ◽  
pp. 87-98 ◽  
Author(s):  
David H. Vandorpe ◽  
Sabine Wilhelm ◽  
Lianwei Jiang ◽  
Oxana Ibraghimov-Beskrovnaya ◽  
Marina N. Chernova ◽  
...  

Polycystin-1 (PKD1) mutations account for ∼85% of autosomal dominant polycystic kidney disease (ADPKD). We have shown previously that oocyte surface expression of a transmembrane fusion protein encoding part of the cytoplasmic COOH terminus of PKD1 increases activity of a Ca2+-permeable cation channel. We show here that human ADPKD mutations incorporated into this fusion protein attenuated or abolished encoded cation currents. Point mutations and truncations showed that cation current expression requires integrity of a region encompassing the putative coiled coil domain of the PKD1 cytoplasmic tail. Whereas these loss-of-function mutants did not exhibit dominant negative phenotypes, coexpression of a fusion protein expressing the interacting COOH-terminal cytoplasmic tail of PKD2 did suppress cation current. Liganding of the ectodomain of the PKD1 fusion protein moderately activated cation current. The divalent cation permeability and pharmacological profile of the current has been extended. Inducible expression of the PKD1 fusion in EcR-293 cells was also associated with activation of cation channels and increased Ca2+ entry.


2009 ◽  
Vol 83 (17) ◽  
pp. 8998-9001 ◽  
Author(s):  
Shannon D. Whitman ◽  
Everett Clinton Smith ◽  
Rebecca Ellis Dutch

ABSTRACT Hendra virus F protein-promoted membrane fusion requires the presence of the viral attachment protein, G. However, events leading to the association of these glycoproteins remain unclear. Results presented here demonstrate that Hendra virus G undergoes slower secretory pathway trafficking than is observed for Hendra virus F. This slowed trafficking is not dependent on the G protein cytoplasmic tail, the presence of the G receptor ephrin B2, or interaction with other viral proteins. Instead, Hendra virus G was found to undergo intrinsically slow oligomerization within the endoplasmic reticulum. These results suggest that the critical F-G interactions occur only after the initial steps of synthesis and cellular transport.


1994 ◽  
Vol 127 (6) ◽  
pp. 1843-1857 ◽  
Author(s):  
K C Hart ◽  
Y F Xu ◽  
A N Meyer ◽  
B A Lee ◽  
D J Donoghue

The location of autocrine interactions between the v-sis protein and PDGF receptors remains uncertain and controversial. To examine whether receptor-ligand interactions can occur intracellularly, we have constructed fusion proteins that anchor v-sis to specific intracellular membranes. Fusion of a cis-Golgi retention signal from a coronavirus E1 glycoprotein to v-sis protein completely abolished its transforming ability when transfected into NIH3T3 cells. Fusion proteins incorporating mutations in this retention signal were not retained within the Golgi complex but instead were transported to the cell surface, resulting in efficient transformation. All chimeric proteins were shown to dimerize properly. Derivatives of some of these constructs were also constructed bearing the cytoplasmic tail from the glycoprotein of vesicular stomatitis virus (VSV-G). These constructs allowed examination of subcellular localization by double-label immunofluorescence, using antibodies that distinguish between the extracellular PDGF-related domain and the VSV-G cytoplasmic tail. Colocalization of sis-E1-G with Golgi markers confirmed its targeting to the early Golgi complex. The sis-E1 constructs, targeted to the early Golgi complex, exhibited no proteolytic processing whereas the mutant forms of sis-E1 exhibited normal proteolytic processing. Treatment with suramin, a polyanionic compound that disrupts ligand/receptor interactions at the cell surface, was able to revert the transformed phenotype induced by the mutant sis-E1 constructs described here. Our results demonstrate that autocrine interactions between the v-sis oncoprotein and PDGF receptors within the early Golgi complex do not result in functional signal transduction. Another v-sis fusion protein was constructed by attaching the transmembrane domain and COOH-terminus of TGN38, a protein that localizes to the trans-Golgi network (TGN). This construct was primarily retained intracellularly, although some of the fusion protein reached the surface. Deletion of the COOH-terminal region of the TGN38 retention signal abrogated the TGN-localization, as evidenced by very prominent cell surface localization, and resulted in increased transforming activity. The behavior of the sis-TGN38 derivatives is discussed within the context of the properties of TGN38 itself, which is known to recycle from the cell surface to the TGN.


Sign in / Sign up

Export Citation Format

Share Document