scholarly journals Deletion of the L7L-L11L Genes Attenuates ASFV and Induces Protection against Homologous Challenge

Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 255
Author(s):  
Jingyuan Zhang ◽  
Yanyan Zhang ◽  
Teng Chen ◽  
Jinjin Yang ◽  
Huixian Yue ◽  
...  

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a major epidemic disease endangering the swine industry. Although a number of vaccine candidates have been reported, none are commercially available yet. To explore the effect of unknown genes on the biological characteristics of ASFV and the possibility of a gene-deleted isolate as a vaccine candidate, the strain SY18ΔL7-11, with deletions of L7L–L11L genes from ASFV SY18, was constructed, and its biological properties were analyzed. The results show that deletion of genes L7L-L11L did not affect replication of the virus in vitro. Virulence of SY18△L7-11 was significantly reduced, as 11 of the 12 pigs survived for 28 days after intramuscular inoculation with a low dose (103 TCID50) or a high dose (106 TCID50) of SY18ΔL7-11. All 11 surviving pigs were completely protected against challenge with the parental ASFV SY18 on 28 days postinoculation (dpi). Transient fever and/or irregularly low levels of genomic DNA in the blood were monitored in some pigs after inoculation. No ASF clinical signs or viremia were monitored after challenge. Antibodies to ASFV were induced in all pigs from 14 to 21 days postinoculation. IFN-γ was detected in most of the inoculated pigs, which is usually inhibited in ASFV-infected pigs. Overall, the results demonstrate that SY18ΔL7-11 is a candidate for further constructing safer vaccine(s), with better joint deletions of other gene(s) related to virulence.

2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. In this study we investigated the effect of deleting combinations of different genes from a previously attenuated virus, BeninΔDP148R on: virus replication in macrophages, virus persistence and clinical signs post immunization, and induction of protection against challenge. Deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R did not reduce virus replication in vitro. However, deletion of EP402R dramatically reduced viral persistence in vivo, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and a slight increase in virus genome copies in blood was observed at different times post immunization when compared with BeninΔDP148R. These results show that EP402R and EP153R have a synergistic role in promoting viremia, however EP153R alone does not seem to have a major impact on virus levels in blood.


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 262 ◽  
Author(s):  
Ana Luisa Reis ◽  
Lynnette C. Goatley ◽  
Tamara Jabbar ◽  
Elisabeth Lopez ◽  
Anusyah Rathakrishnan ◽  
...  

Live attenuated vaccines are considered to be the fastest route to the development of a safe and efficacious African swine fever (ASF) vaccine. Infection with the naturally attenuated OURT88/3 strain induces protection against challenge with virulent isolates from the same or closely related genotypes. However, adverse clinical signs following immunisation have been observed. Here, we attempted to increase the OURT88/3 safety profile by deleting I329L, a gene previously shown to inhibit the host innate immune response. The resulting virus, OURT88/3ΔI329L, was tested in vitro to evaluate the replication and expression of type I interferon (IFN) and in vivo by immunisation and lethal challenge experiments in pigs. No differences were observed regarding replication; however, increased amounts of both IFN-β and IFN-α were observed in macrophages infected with the deletion mutant virus. Unexpectedly, the deletion of I329L markedly reduced protection against challenge with the virulent OURT88/1 isolate. This was associated with a decrease in both antibody levels against VP72 and the number of IFN-γ-producing cells in the blood of non-protected animals. Furthermore, a significant increase in IL-10 levels in serum was observed in pigs immunised with OURT88/3ΔI329L following challenge. Interestingly, the deletion of the I329L gene failed to attenuate the virulent Georgia/2007 isolate.


2021 ◽  
Author(s):  
Vlad Petrovan ◽  
Anusyah Rathakrishnan ◽  
Muneeb Islam ◽  
Lynnette C. Goatley ◽  
Katy Moffat ◽  
...  

The limited knowledge on the role of many of the approximately 170 proteins encoded by African swine fever virus restricts progress towards vaccine development. Previously, the DP148R gene was deleted from the genome of genotype I virulent Benin 97/1 isolate. This virus, BeninΔDP148R, induced transient moderate clinical signs after immunization and high levels of protection against challenge. However, the BeninΔDP148R virus and genome persisted in blood over a prolonged period. In the current study deletion of either EP402R or EP153R genes individually or in combination from BeninΔDP148R genome was shown not to reduce virus replication in macrophages in vitro. However, deletion of EP402R dramatically reduced the period of infectious virus persistence in blood in immunized pigs from 28 to 14 days and virus genome from 59 to 14 days, whilst maintaining high levels of protection against challenge. The additional deletion of EP153R (BeninΔDP148RΔEP153RΔEP402R) further attenuated the virus and no viremia or clinical signs were observed post-immunization. This was associated with decreased protection and detection of moderate levels of challenge virus in blood. Interestingly, the deletion of EP153R alone from BeninΔDP148R did not result in further virus attenuation and did not reduce the period of virus persistence in blood. These results show that EP402R and EP153R have a synergistic role in reducing clinical signs and levels of virus in blood. Importance: African swine fever virus (ASFV) causes a disease of domestic pigs and wild boar which results in death of almost all infected animals. The disease has a high economic impact, and no vaccine is available. We investigated the role of two ASFV proteins, called EP402R and EP153R, in determining the levels and length of time virus persists in blood from infected pigs. EP402R causes ASFV particles and infected cells to bind to red blood cells. Deletion of the EP402R gene dramatically reduced virus persistence in blood but did not reduce the level of virus. Deletion of the EP153R alone did not reduce the period or level of virus persistence in blood. However, deleting both EP153R and EP402R resulted in undetectable levels of virus in blood and no clinical signs showing the proteins act synergistically. Importantly the infected pigs were protected following infection with the wildtype virus that kills pigs.


Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 286
Author(s):  
Elizabeth Ramirez-Medina ◽  
Elizabeth Vuono ◽  
Sarah Pruitt ◽  
Ayushi Rai ◽  
Ediane Silva ◽  
...  

African swine fever (ASF) is currently causing an epizootic, affecting pigs throughout Eurasia, and causing significant economic losses in the swine industry. ASF is caused by African swine fever virus (ASFV) that consists of a large dsDNA genome that encodes for more than 160 genes; few of these genes have been studied in detail. ASFV contains four multi-gene family (MGF) groups of genes that have been implicated in regulating the immune response and host specificity; however, the individual roles of most of these genes have not been well studied. Here, we describe the evaluation of the previously uncharacterized ASFV MGF110-1L open reading frame (ORF) using a deletion mutant of the ASFV currently circulating throughout Eurasia. The recombinant ASFV lacking the MGF110-1L gene (ASFV-G-ΔMGF110-1L) demonstrated in vitro that the MGF110-1L gene is non-essential, since ASFV-G-ΔMGF110-1L had similar replication kinetics in primary swine macrophage cell cultures when compared to parental highly virulent field isolate Georgia2007 (ASFV-G). Experimental infection of domestic pigs with ASFV-G-ΔMGF110-1L produced a clinical disease similar to that caused by the parental ASFV-G, confirming that deletion of the MGF110-1L gene from the ASFV genome does not affect viral virulence.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Yanyan Zhang ◽  
Junnan Ke ◽  
Jingyuan Zhang ◽  
Huixian Yue ◽  
Teng Chen ◽  
...  

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) which reaches up to 100% case fatality in domestic pigs and wild boar and causes significant economic losses in the swine industry. Lack of knowledge of the function of ASFV genes is a serious impediment to the development of the safe and effective vaccine. Herein, I267L was identified as a relative conserved gene and an early expressed gene. A recombinant virus (SY18ΔI267L) with I267L gene deletion was produced by replacing I267L of the virulent ASFV SY18 with enhanced green fluorescent protein (EGFP) cassette. The replication kinetics of SY18ΔI267L is similar to that of the parental isolate in vitro. Moreover, the doses of 102.0 TCID50 (n = 5) and 105.0 TCID50 (n = 5) SY18ΔI267L caused virulent phenotype, severe clinical signs, viremia, high viral load, and mortality in domestic pigs inoculated intramuscularly as the virulent parental virus strain. Therefore, the deletion of I267L does not affect the replication or the virulence of ASFV. Utilizing the fluorescent-tagged virulence deletant can be easy to gain a visual result in related research such as the inactivation effect of some drugs, disinfectants, extracts, etc. on ASFV.


1998 ◽  
Vol 72 (12) ◽  
pp. 10310-10315 ◽  
Author(s):  
D. M. Moore ◽  
L. Zsak ◽  
J. G. Neilan ◽  
Z. Lu ◽  
D. L. Rock

ABSTRACT African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter–β-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK− ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK− ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.


Vaccines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 12 ◽  
Author(s):  
Sun-Young Sunwoo ◽  
Daniel Pérez-Núñez ◽  
Igor Morozov ◽  
Elena Sánchez ◽  
Natasha Gaudreault ◽  
...  

African swine fever virus (ASFV) causes high morbidity and mortality in swine (Sus scrofa), for which there is no commercially available vaccine. Recent outbreaks of the virus in Trans-Caucasus countries, Eastern Europe, Belgium and China highlight the urgent need to develop effective vaccines against ASFV. Previously, we evaluated the immunogenicity of a vaccination strategy designed to test various combinations of ASFV antigens encoded by DNA plasmids and recombinant proteins with the aim to activate both humoral and cellular immunity. Based on our previous results, the objective of this study was to test the combined DNA-protein vaccine strategy using a cocktail of the most immunogenic antigens against virulent ASFV challenge. Pigs were vaccinated three times with a cocktail that included ASFV plasmid DNA (CD2v, p72, p32, +/−p17) and recombinant proteins (p15, p35, p54, +/−p17). Three weeks after the third immunization, all pigs were challenged with the virulent ASFV Armenia 2007 strain. The results showed that vaccinated pigs were not protected from ASFV infection or disease. Compared to the non-vaccinated controls, earlier onset of clinical signs, viremia, and death were observed for the vaccinated animals following virulent ASFV challenge. ASFV induced pathology was also enhanced in the vaccinated pigs. Furthermore, while the vaccinated pigs developed antigen-specific antibodies, immunized pig sera at the time of challenge lacked the capacity to neutralize virus, and instead was observed to enhance ASFV infection in vitro. The results of this work points to a putative immune enhancement mechanism involved in ASFV pathogenesis that warrants further investigation. This pilot study provides insight for the selection of appropriate combinations of ASFV antigens for the development of a rationally-designed, safe, and efficacious vaccine for ASF.


Vaccines ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 763
Author(s):  
Teshale Teklue ◽  
Tao Wang ◽  
Yuzi Luo ◽  
Rongliang Hu ◽  
Yuan Sun ◽  
...  

African swine fever (ASF) is a highly contagious and often lethal disease caused by African swine fever virus (ASFV). ASF emerged in China in August 2018 and has since rapidly spread into many areas of the country. The disease has caused a significant impact on China’s pig and related industries. A safe and effective vaccine is needed to prevent and control the disease. Several gene-deleted ASFVs have been reported; however, none of them is safe enough and commercially available. In this study, we report the generation of a double gene-deleted ASFV mutant, ASFV-SY18-∆CD2v/UK, from a highly virulent field strain ASFV-SY18 isolated in China. The results showed that ASFV-SY18-∆CD2v/UK lost hemadsorption properties, and the simultaneous deletion of the two genes did not significantly affect the in vitro replication of the virus in primary porcine alveolar macrophages. Furthermore, ASFV-SY18-∆CD2v/UK was attenuated in pigs. All the ASFV-SY18-∆CD2v/UK-inoculated pigs remained healthy, and none of them developed ASF-associated clinical signs. Additionally, the ASFV-SY18-∆CD2v/UK-infected pigs developed ASFV-specific antibodies, and no virus genome was detected in blood and nasal discharges at 21 and 28 days post-inoculation. More importantly, we found that all the pigs inoculated with 104 TCID50 of ASFV-SY18-∆CD2v/UK were protected against the challenge with the parental ASFV-SY18. However, low-level ASFV DNA was detected in blood, nasal swabs, and lymphoid tissue after the challenge. The results demonstrate that ASFV-SY18-∆CD2v/UK is safe and able to elicit protective immune response in pigs and can be a potential vaccine candidate to control ASF.


2021 ◽  
Author(s):  
Yanyan Zhang ◽  
Junnan Ke ◽  
Jingyuan Zhang ◽  
Jinjin Yang ◽  
Huixian Yue ◽  
...  

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by the African swine fever virus (ASFV), leading to devastating economic losses in the epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and the surrounding suspected pigs. ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable due to numerous reasons. Herein, we reported another ASF vaccine candidate named SY18ΔI226R bearing a deletion of the I226R gene in replacement of an eGFP expression cassette at the right end of the viral genome. This deletion results in complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with either a dosage of 10 4.0 TCID 50 or 10 7.0 TCID 50 . An apparent viremia with the gradual decline was monitored, while the virus shedding was only occasionally detected in oral- or anal swabs. ASFV specific antibody appeared at 9 days post-inoculation. After intramuscular challenge with its parental strain ASFV SY18 on 21 days post inoculation, all the challenged pigs survived without obvious febrile or abnormal clinical signs. No viral DNA could be detected on the dissection of any tissue when viremia disappeared. These indicated that SY18ΔI226R is safe in swine and elicits a robust immunity to the virulent ASFV infection. IMPORTANCE: Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use due to several reasons, especially the ones concerning bio-safety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in the swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by an intramuscular challenge of 10 2.5 or 10 4.0 TCID 50 of its virulent parental virus. Furthermore, rarely the nucleic acid of the gene-deleted virus and its virulent parental virus was detected from oral- or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal and efficacious vaccine candidate for genotype II ASF.


2020 ◽  
Author(s):  
Sabal Chaulagain ◽  
Gustavo Delhon ◽  
Sushil Khatiwada ◽  
Daniel L. Rock

ABSTRACTAfrican swine fever (ASF) is a disease of swine characterized by massive lymphocyte depletion in lymphatic tissues due to apoptosis of B and T cells, most likely triggered by proteins or factors secreted by infected adjacent macrophages. Here we describe a role for the ASF virus (ASFV) protein CD2v in apoptosis induction in lymphocytes. CD2v is a viral homolog of host CD2 that has been implicated in viral virulence and immunomodulation in vitro; however, its actual function remains unknown. We show that CD2v is secreted into culture medium of CD2v-expressing swine cells; and expression of-or treatment with CD2v led to significant induction of IFN-β/ISGs transcription and antiviral state. CD2v expression led to enhanced NF-κB-p65 nuclear translocation in these cultures and incubation with a NF-κB inhibitor reduced CD2v-induced NF-κB-p65 nuclear translocation and IFN-β transcription. We show that CD2v binds CD58, the natural CD2 ligand, and that CD58 siRNA knock-down results in significant reduction in NF-κB-p65 nuclear translocation and IFN-β transcription. Treatment of swine PBMC with purified CD2v led to enhanced NF-κB-p65 nuclear translocation and induction of IFN-β transcription. Further, induction of caspase-3 and PARP1 cleavage was observed in these swine PBMC at later times, providing a mechanism for CD2v-induced apoptosis of lymphocytes. Finally, IFN-β induction and NF-κB activation was inhibited in swine PBMC treated with purified CD2v pre-incubated with antibodies against CD2v. Overall, our results indicate that ASFV CD2v is an immunomodulatory protein that, by promoting lymphocyte apoptosis, may contribute to bystander lymphocyte depletion observed during ASFV infection in pigs.IMPORTANCEASF, a severe hemorrhagic disease of domestic swine, represents a significant economic threat to swine industry worldwide. One critical pathological event observed in pigs infected with virulent isolates is an extensive destruction of lymphoid tissue and massive lymphocyte depletion. However, viral factor/s involved in this event are yet to be identified. Here we show that, by inducing NF-κB-dependent IFN signaling, ASFV CD2v is able to promote apoptosis in swine PBMC. We propose that CD2v released by ASFV-infected macrophages contributes to the massive depletion of lymphocytes observed in lymphoid tissues of infected pigs. Results here improve our understanding of ASFV pathogenesis and will encourage novel intervention approaches.


Sign in / Sign up

Export Citation Format

Share Document