scholarly journals Designing Lentiviral Vectors for Gene Therapy of Genetic Diseases

Viruses ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1526
Author(s):  
Valentina Poletti ◽  
Fulvio Mavilio

Lentiviral vectors are the most frequently used tool to stably transfer and express genes in the context of gene therapy for monogenic diseases. The vast majority of clinical applications involves an ex vivo modality whereby lentiviral vectors are used to transduce autologous somatic cells, obtained from patients and re-delivered to patients after transduction. Examples are hematopoietic stem cells used in gene therapy for hematological or neurometabolic diseases or T cells for immunotherapy of cancer. We review the design and use of lentiviral vectors in gene therapy of monogenic diseases, with a focus on controlling gene expression by transcriptional or post-transcriptional mechanisms in the context of vectors that have already entered a clinical development phase.

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 5143-5143
Author(s):  
Liesbeth De Waele ◽  
Kathleen Freson ◽  
Chantal Thys ◽  
Christel Van Geet ◽  
Désiré Collen ◽  
...  

Abstract The prevalence of congenital platelet disorders has not been established but for some life-threatening bleeding disorders the current therapies are not adequate, justifying the development of alternative strategies as gene therapy. In the case of platelet dysfunction and thrombocytopenia as described for GATA1 deficiency, potentially lethal internal bleedings can occur. The objective of the study is to develop improved lentiviral vectors for megakaryocyte(MK)-specific long term gene expression by ex vivo transduction of hematopoietic stem cells (HSC) to ultimately use for congenital thrombopathies as GATA1 deficiency. Self-inactivating lentiviral vectors were constructed expressing GFP driven by the murine (m) or human (h) GPIIb promoter. These promoters contain multiple Ets and GATA binding sites directing MK-specificity. To evaluate the cell lineage-specificity and transgene expression potential of the vectors, murine Sca1+ and human CD34+ HSC were transduced in vitro with Lenti-hGPIIb-GFP and Lenti-mGPIIb-GFP vectors. After transduction the HSC were induced to differentiate in vitro along the MK and non-MK lineages. The mGPIIb and hGPIIb promoters drove GFP expression at overall higher levels (20% in murine cells and 25% in human cells) than the ubiquitous CMV (cytomegalovirus) or PGK (phosphoglycerate kinase) promoters, and this exclusively in the MK lineage. Interestingly, in both human and murine HSC the hGPIIb promoter with an extra RUNX and GATA binding site, was more potent in the MK lineage compared to the mGPIIb promoter. Since FLI1 and GATA1 are the main transcription factors regulating GPIIb expression, we tested the Lenti-hGPIIb-GFP construct in GATA1 deficient HSC and obtained comparable transduction efficiencies as for wild-type HSC. To assess the MK-specificity of the lentiviral vectors in vivo, we transplanted irradiated wild-type C57Bl/6 mice with Sca1+ HSC transduced with the Lenti-hGPIIb-GFP constructs. Six months after transplantation we could detect 6% GFP positive platelets without a GFP signal in other cell lineages. Conclusion: In vitro and in vivo MK-specific transgene expression driven by the hGPIIb and mGPIIb promoters could be obtained after ex vivo genetic engineering of HSC by improved lentiviral vectors. Studies are ongoing to study whether this approach can induce phenotypic correction of GATA1 deficient mice by transplantation of ex vivo Lenti-hGPIIb-GATA1 transduced HSC.


2021 ◽  
Author(s):  
Francesca Tucci ◽  
Stefania Galimberti ◽  
Luigi Naldini ◽  
Maria G Valsecchi ◽  
Alessandro Aiuti

Abstract To provide an assessment of the safety of ex-vivo gene therapy (GT) with hematopoietic stem and progenitor cells (HSPC), we reviewed in a systematic manner the literature on monogenic diseases to describe survival, genotoxicity and engraftment of gene corrected HSPC, across vector platforms and diseases. From 1995 to 2020, 55 trials for 14 diseases met inclusion criteria and 406 patients with primary immunodeficiencies (55.2%), metabolic diseases (17.0%), haemoglobinopathies (24.4%) and bone marrow failures (3.4%) were treated with gammaretroviral vector (γRV) (29.1%), self-inactivating γRV (2.2%) or lentiviral vectors (LV) (68.7%). The pooled overall incidence rate of death was 0.9 per 100 person-years of observation (PYO) (95%CI = 0.37–2.17). There were 21 genotoxic events out of 1504.02 PYO. All these events occurred in γRV trials (0.99 events per 100 PYO, 95%CI = 0.18–5.43) for primary immunodeficiencies. Pooled rate of engraftment was 86.1% (95%CI = 66.9–95.0%) for γRV and 99.0% (95%CI = 95.1–99.8%) for LV HSPC-GT (p = 0.002). A comprehensive meta-analysis on HSPC-GT showed stable reconstitution of haematopoiesis in most recipients with superior engraftment and safer profile in patients receiving LV-transduced HSPC.


Blood ◽  
2008 ◽  
Vol 111 (12) ◽  
pp. 5537-5543 ◽  
Author(s):  
Grant D. Trobridge ◽  
Brian C. Beard ◽  
Christina Gooch ◽  
Martin Wohlfahrt ◽  
Philip Olsen ◽  
...  

AbstractLentiviral vectors are attractive for hematopoietic stem cell (HSC) gene therapy because they do not require mitosis for nuclear entry, they efficiently transduce hematopoietic repopulating cells, and self-inactivating (SIN) designs can be produced at high titer. Experiments to evaluate HIV-derived lentiviral vectors in nonhuman primates prior to clinical trials have been hampered by low transduction frequencies due in part to host restriction by TRIM5α. We have established conditions for efficient transduction of pigtailed macaque (Macaca nemestrina) long-term repopulating cells using VSV-G–pseudotyped HIV-based lentiviral vectors. Stable, long-term, high-level gene marking was observed in 3 macaques using relatively low MOIs (5-10) in a 48-hour ex vivo transduction protocol. All animals studied had rapid neutrophil engraftment with a median of 10.3 days to a count greater than 0.5 × 109/L (500/μL). Expression was detected in all lineages, with long-term marking levels in granulocytes at approximately 20% to 30%, and in lymphocytes at approximately 12% to 23%. All animals had polyclonal engraftment as determined by analysis of vector integration sites. These data suggest that lentiviral vectors should be highly effective for HSC gene therapy, particularly for diseases in which maintaining the engraftment potential of stem cells using short-term ex vivo transduction protocols is critical.


2021 ◽  
Author(s):  
Miren Lasaga ◽  
Paula Rio ◽  
Amaia Vilas-Zornoza ◽  
Nuria Planell ◽  
Susana Navarro ◽  
...  

Fanconi anemia (FA) is a monogenic inherited disease associated with mutations in genes that encode for proteins participating in the FA/BRCA DNA repair pathway. Mutations in FA genes result in chromosomal instability and cell death, leading to cancer risks and progressive cell mortality, most notably in hematopoietic stem and progenitor cells (HSPC). Recently, we showed the first clinical evidence that gene therapy confers engraftment and proliferative advantage of gene-corrected HSPCs in FA patients1. Despite this and many other gene therapy advances, the question of whether the molecular pathways affected in monogenic diseases can be reverted by lentiviral-mediated gene therapy has never been addressed. This is even more challenging in DNA repair syndromes such as FA since in these cases, transcriptional defects in affected cells might not be restored due to DNA damage accumulated prior to gene therapy. Using single-cell RNA sequencing in HSPCs from FA-A patients previously treated by ex vivo gene therapy, we demonstrate that lentiviral-mediated gene therapy prior to severe bone marrow failure not only restores the expression of the defective gene, but also induces a long-term correction of the transcriptional program in FA HSPCs, which then acquire a signature characteristic of healthy HSPCs. Our results reveal new molecular evidence showing the potential of gene therapy to fully rescue phenotypic defects in FA, a devastating HSPC disease characterized by defective DNA repair.


Hematology ◽  
2009 ◽  
Vol 2009 (1) ◽  
pp. 682-689 ◽  
Author(s):  
Alessandro Aiuti ◽  
Maria Grazia Roncarolo

Abstract Gene therapy with hematopoietic stem cells (HSC) is an attractive therapeutic strategy for several forms of primary immunodeficiencies. Current approaches are based on ex vivo gene transfer of the therapeutic gene into autologous HSC by vector-mediated gene transfer. In the past decade, substantial progress has been achieved in the treatment of severe combined immundeficiencies (SCID)-X1, adenosine deaminase (ADA)-deficient SCID, and chronic granulomatous disease (CGD). Results of the SCID gene therapy trials have shown long-term restoration of immune competence and clinical benefit in over 30 patients. The inclusion of reduced-dose conditioning in the ADA-SCID has allowed the engraftment of multipotent gene-corrected HSC at substantial level. In the CGD trial significant engraftment and transgene expression were observed, but the therapeutic effect was transient. The occurrence of adverse events related to insertional mutagenesis in the SCID-X1 and CGD trial has highlighted the limitations of current retroviral vector technology. For future applications the risk-benefit evaluation should include the type of vector employed, the disease background and the nature of the transgene. The use of self-inactivating lentiviral vectors will provide significant advantages in terms of natural gene regulation and reduction in the potential for adverse mutagenic events. Following recent advances in preclinical studies, lentiviral vectors are now being translated into new clinical approaches, such as Wiskott-Aldrich Syndrome.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1859-1859
Author(s):  
Richard H. Smith ◽  
Daisuke Araki ◽  
Andre Larochelle

Abstract Leukocyte adhesion deficiency type 1 (LAD-1) is an inherited primary immunodeficiency caused by loss-of-function mutation within the ITGB2 gene, which encodes the beta2 integrin subunit CD18. Individuals with LAD-1 experience significant loss of neutrophil-mediated innate cellular immune function, resulting in delayed wound healing, severe periodontitis, and life-long bouts of bacterial infection. LAD-1 is a prime candidate for lentiviral vector-mediated genetic intervention as i) it is an intractable, potentially life-threatening disease with limited treatment options, ii) it is amenable to current ex vivo gene therapy procedures, and iii) partial phenotypic correction would present a high likelihood of significant clinical benefit. Allogeneic stem cell transplant can be curative, but suffers from matched donor availability and the potential for graft-versus-host disease. Autologous ex vivo gene therapy may provide a viable alternative to allogeneic transplant in LAD-1 patients. We have evaluated the ability of a CD18-expressing lentiviral vector (LV-hCD18) to mediate ex vivo transduction of LAD-1 patient-derived CD34+ hematopoietic stem and progenitor cells (HSPCs) and subsequent long-term LAD-1 HSPC engraftment in immunodeficient NOD-scid IL2Rg null (NSG) mice. An open reading frame encoding human CD18 was placed under the transcriptional control of the MND promoter (a modified retroviral promoter associated with high levels of stable transgene expression) and packaged in VSV-G-pseudotyped lentiviral particles. After 1 day of pre-stimulation, LAD-1 HSPCs were transduced with LV-hCD18 (MOI = 10) in the presence or absence of transduction-enhancing adjuvants, poloxamer 407 (P407) and prostaglandin E2 (PGE 2), for 24 hours. Sublethally irradiated NSG mice (7 mice/group) were transplanted with either mock-transduced LAD-1 HSPCs, LAD-1 HSPCs transduced in the absence of adjuvants, or LAD-1 HSPCs transduced in the presence of P407/PGE 2. Bone marrow was harvested at ~5.5 months post-transplant for flow cytometric analyses of engraftment efficiency, transgene marking, and human blood cell lineage reconstitution. Bone marrow from mice that received mock-transduced LAD-1 HSPCs showed an average total of 6.45 ± 2.54% (mean ± SEM) CD45+ human cells. Mice that received LAD-1 HSPCs transduced in the absence of adjuvants showed 7.99 ± 1.82% CD45+ human cells, whereas mice transplanted with LAD-1 HSPCs transduced in the presence of adjuvants showed 7.33 ± 1.90% CD45+ cells. A Kruskal-Wallis statistical test indicated no significant difference in the level of human cell engraftment among the recipient groups (P=0.72). Consistent with the LAD-1 phenotype, human myeloid cells from mice that received mock-transduced LAD-1 HSPCs displayed only background levels of CD18 marking (0.13 ± 0.06% CD45+CD13+CD18+ cells). Mice that received LAD-1 HSPCs transduced in the absence of adjuvants showed 4.05 ± 0.40% CD18+ human myeloid cells (range 2.19% to 5.50%), whereas mice that received LAD-1 HSPCs transduced in the presence of P407/PGE 2 showed 9.56 ± 0.96% CD18+ human myeloid cells (range 4.63% to 13.10%), thus representing a >2-fold increase in in vivo, vector-mediated transgene marking levels when adjuvant was used. Moreover, vector-mediated expression of CD18 rescued endogenous expression of a major CD18 heterodimerization partner in neutrophils, CD11b. In mock-transduced LAD-1 HSPC recipients, CD13+ human myeloid cells were devoid of cell surface CD11b expression (0.01 ± 0.01% CD45+CD13+CD11b+ cells). In contrast, CD13+ human myeloid cells in mice that received LAD-1 HSPCs transduced in the absence of adjuvant showed detectable levels of CD11b expression (2.62 ± 0.19% of CD18-expressing human myeloid cells), and CD11b levels were increased to 6.90 ± 0.98% in LAD-1 HSPCs transduced in the presence of P407/PGE 2. Multilineage engraftment, as evidenced by the presence of CD3+ T cells and CD20+ B cells, was noted within all groups; however, human myeloid cells represented the most prominent human blood cell compartment observed. Colony-forming-unit assays of transduced cells and non-transduced control cells pre-transplant showed similar clonogenic output and colony diversity. In sum, successful transduction, engraftment, transgene marking, CD11b rescue, and multilineage reconstitution supports further development of lentiviral vector-mediated gene therapy for LAD-1. Disclosures No relevant conflicts of interest to declare.


Hematology ◽  
2014 ◽  
Vol 2014 (1) ◽  
pp. 475-480 ◽  
Author(s):  
Donald B. Kohn

Abstract Treatments for patients with SCID by hematopoietic stem cell transplantation (HSCT) have changed this otherwise lethal primary immune deficiency disorder into one with an increasingly good prognosis. SCID has been the paradigm disorder supporting many key advances in the field of HSCT, with first-in-human successes with matched sibling, haploidentical, and matched unrelated donor allogeneic transplantations. Nevertheless, the optimal approaches for HSCT are still being defined, including determining the optimal stem cell sources, the use and types of pretransplantation conditioning, and applications for SCID subtypes associated with radiosensitivity, for patients with active viral infections and for neonates. Alternatively, autologous transplantation after ex vivo gene correction (gene therapy) has been applied successfully to the treatment of adenosine deaminase–deficient SCID and X-linked SCID by vector-mediated gene addition. Gene therapy holds the prospect of avoiding risks of GVHD and would allow each patient to be their own donor. New approaches to gene therapy by gene correction in autologous HSCs using site-specific endonuclease-mediated homology-driven gene repair are under development. With newborn screening becoming more widely adopted to detect SCID patients before they develop complications, the prognosis for SCID is expected to improve further. This chapter reviews recent advances and ongoing controversies in allogeneic and autologous HSCT for SCID.


Sign in / Sign up

Export Citation Format

Share Document