scholarly journals Phylogenetic Structure and Sequential Dominance of Sub-Lineages of PRRSV Type-2 Lineage 1 in the United States

Vaccines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 608
Author(s):  
Igor A. D. Paploski ◽  
Nakarin Pamornchainavakul ◽  
Dennis N. Makau ◽  
Albert Rovira ◽  
Cesar A. Corzo ◽  
...  

The genetic diversity and frequent emergence of novel genetic variants of porcine reproductive and respiratory syndrome virus type-2 (PRRSV) hinders control efforts, yet drivers of macro-evolutionary patterns of PRRSV remain poorly documented. Utilizing a comprehensive database of >20,000 orf5 sequences, our objective was to classify variants according to the phylogenetic structure of PRRSV co-circulating in the U.S., quantify evolutionary dynamics of sub-lineage emergence, and describe potential antigenic differences among sub-lineages. We subdivided the most prevalent lineage (Lineage 1, accounting for approximately 60% of available sequences) into eight sub-lineages. Bayesian coalescent SkyGrid models were used to estimate each sub-lineage’s effective population size over time. We show that a new sub-lineage emerged every 1 to 4 years and that the time between emergence and peak population size was 4.5 years on average (range: 2–8 years). A pattern of sequential dominance of different sub-lineages was identified, with a new dominant sub-lineage replacing its predecessor approximately every 3 years. Consensus amino acid sequences for each sub-lineage differed in key GP5 sites related to host immunity, suggesting that sub-lineage turnover may be linked to immune-mediated competition. This has important implications for understanding drivers of genetic diversity and emergence of new PRRSV variants in the U.S.

Author(s):  
Richard Frankham ◽  
Jonathan D. Ballou ◽  
Katherine Ralls ◽  
Mark D. B. Eldridge ◽  
Michele R. Dudash ◽  
...  

Genetic management of fragmented populations involves the application of evolutionary genetic theory and knowledge to alleviate problems due to inbreeding and loss of genetic diversity in small population fragments. Populations evolve through the effects of mutation, natural selection, chance (genetic drift) and gene flow (migration). Large outbreeding, sexually reproducing populations typically contain substantial genetic diversity, while small populations typically contain reduced levels. Genetic impacts of small population size on inbreeding, loss of genetic diversity and population differentiation are determined by the genetically effective population size, which is usually much smaller than the number of individuals.


2019 ◽  
Vol 286 (1916) ◽  
pp. 20191989 ◽  
Author(s):  
M. C. Yates ◽  
E. Bowles ◽  
D. J. Fraser

Little empirical work in nature has quantified how wild populations with varying effective population sizes and genetic diversity perform when exposed to a gradient of ecologically important environmental conditions. To achieve this, juvenile brook trout from 12 isolated populations or closed metapopulations that differ substantially in population size and genetic diversity were transplanted to previously fishless ponds spanning a wide gradient of ecologically important variables. We evaluated the effect of genome-wide variation, effective population size ( N e ), pond habitat, and initial body size on two fitness correlates (survival and growth). Genetic variables had no effect on either fitness correlate, which was determined primarily by habitat (pond temperature, depth, and pH) and initial body size. These results suggest that some vertebrate populations with low genomic diversity, low N e , and long-term isolation can represent important sources of variation and are capable of maintaining fitness in, and ultimately persisting and adapting to, changing environments. Our results also reinforce the paramount importance of improving available habitat and slowing habitat degradation for species conservation.


2016 ◽  
Vol 65 (1) ◽  
pp. 59-66 ◽  
Author(s):  
Y. C. Miao ◽  
Z. J. Zhang ◽  
J. R. Su

Abstract Taxus yunnanensis, which is an endangered tree that is considered valuable because it contains the effective natural anticancer metabolite taxol and heteropolysaccharides, has long suffered from severe habitat fragmentation. In this study, the levels of genetic diversity in two populations of 136 individuals were analyzed based on eleven polymorphic microsatellite loci. Our results suggested that these two populations were characterized by low genetic diversity (NE = 2.303/2.557; HO = 0.168/0.142; HE = 0.453/0.517), a population bottleneck, a low effective population size (Ne = 7/9), a high level of inbreeding (FIS = 0.596/0.702), and a weak, but significant spatial genetic structure (Sp = 0.001, b = −0.001*). Habitat fragmentation, seed shadow overlap and limited seed and pollen dispersal and potential selfing may have contributed to the observed gene tic structure. The results of the present study will enable development of practical conservation measures to effectively conserve the valuable genetic resources of this endangered plant.


Viruses ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 104
Author(s):  
Adam A. Capoferri ◽  
Wei Shao ◽  
Jon Spindler ◽  
John M. Coffin ◽  
Jason W. Rausch ◽  
...  

COVID-19 vaccines were first administered on 15 December 2020, marking an important transition point for the spread of SARS-CoV-2 in the United States (U.S.). Prior to this point in time, the virus spread to an almost completely immunologically naïve population, whereas subsequently, vaccine-induced immune pressure and prior infections might be expected to influence viral evolution. Accordingly, we conducted a study to characterize the spread of SARS-CoV-2 in the U.S. pre-vaccination, investigate the depth and uniformity of genetic surveillance during this period, and measure and otherwise characterize changing viral genetic diversity, including by comparison with more recently emergent variants of concern (VOCs). In 2020, SARS-CoV-2 spread across the U.S. in three phases distinguishable by peaks in the numbers of infections and shifting geographical distributions. Virus was genetically sampled during this period at an overall rate of ~1.2%, though there was a substantial mismatch between case rates and genetic sampling nationwide. Viral genetic diversity tripled over this period but remained low in comparison to other widespread RNA virus pathogens, and although 54 amino acid changes were detected at frequencies exceeding 5%, linkage among them was not observed. Based on our collective observations, our analysis supports a targeted strategy for worldwide genetic surveillance as perhaps the most sensitive and efficient means of detecting new VOCs.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10348
Author(s):  
Austin S. Chipps ◽  
Amanda M. Hale ◽  
Sara P. Weaver ◽  
Dean A. Williams

There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D. intermedius (D. i. floridanus and D. i. intermedius) which are sympatric in this region of Texas, yet little differentiation using microsatellite loci. We suggest this pattern is due to secondary contact and hybridization and possibly incomplete lineage sorting at microsatellite loci. We also found evidence of some hybridization between D. ega and D. intermedius in this region of Texas. We recommend that our data serve as a starting point for the long-term genetic monitoring of these species in order to better understand the impacts of wind-related mortality on these populations over time.


2019 ◽  
Vol 239 ◽  
pp. 108486 ◽  
Author(s):  
Anping Wang ◽  
Jianqiang Zhang ◽  
Huigang Shen ◽  
Ying Zheng ◽  
Qi Feng ◽  
...  

2020 ◽  
Vol 287 (1922) ◽  
pp. 20192613 ◽  
Author(s):  
Elisa G. Dierickx ◽  
Simon Yung Wa Sin ◽  
H. Pieter J. van Veelen ◽  
M. de L. Brooke ◽  
Yang Liu ◽  
...  

Small effective population sizes could expose island species to inbreeding and loss of genetic variation. Here, we investigate factors shaping genetic diversity in the Raso lark, which has been restricted to a single islet for approximately 500 years, with a population size of a few hundred. We assembled a reference genome for the related Eurasian skylark and then assessed diversity and demographic history using RAD-seq data (75 samples from Raso larks and two related mainland species). We first identify broad tracts of suppressed recombination in females, indicating enlarged neo-sex chromosomes. We then show that genetic diversity across autosomes in the Raso lark is lower than in its mainland relatives, but inconsistent with long-term persistence at its current population size. Finally, we find that genetic signatures of the recent population contraction are overshadowed by an ancient expansion and persistence of a very large population until the human settlement of Cape Verde. Our findings show how genome-wide approaches to study endangered species can help avoid confounding effects of genome architecture on diversity estimates, and how present-day diversity can be shaped by ancient demographic events.


Animals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 361 ◽  
Author(s):  
Shuqi Diao ◽  
Shuwen Huang ◽  
Zhiting Xu ◽  
Shaopan Ye ◽  
Xiaolong Yuan ◽  
...  

To investigate the genetic diversity, population structure, extent of linkage disequilibrium (LD), effective population size (Ne), and selection signatures in indigenous pigs from Guangdong and Guangxi in China, 226 pigs belonging to ten diverse populations were genotyped using single nucleotide polymorphism (SNP) chips. The genetic divergence between Chinese and Western pigs was determined based on the SNP chip data. Low genetic diversity of Dahuabai (DHB), Luchuan (LC), Lantang (LT), and Meihua (MH) pigs, and introgression of Western pigs into Longlin (LL), MH, and Yuedonghei (YDH) pigs were detected. Analysis of the extent of LD showed that indigenous pigs had low LD when pairwise SNP distance was short and high LD when pairwise SNP distance was long. Effective population size analysis showed a rapid decrease for Chinese indigenous pigs, and some pig populations had a relatively small Ne. This result indicated the loss of genetic diversity in indigenous pigs, and introgression from Western commercial pigs. Selection signatures detected in this study overlapped with meat quality traits, such as drip loss, intramuscular fat content, meat color b*, and average backfat thickness. Our study deepened understanding of the conservation status and domestication of Chinese indigenous pigs.


Sign in / Sign up

Export Citation Format

Share Document