scholarly journals Genetically Related Mycobacterium bovis Strains Displayed Differential Intracellular Growth in Bovine Macrophages

2019 ◽  
Vol 6 (4) ◽  
pp. 81 ◽  
Author(s):  
Alejandro Benítez-Guzmán ◽  
Hugo Esquivel-Solís ◽  
Cecilia Romero-Torres ◽  
Camila Arriaga-Díaz ◽  
José A. Gutiérrez-Pabello

Molecular typing of bacterial isolates provides a powerful approach for distinguishing Mycobacterium bovis (M. bovis) genotypes. It is known that M. bovis strain virulence plays a role in prevalence and spread of the disease, suggesting that strain virulence and prevailing genotypes are associated. However, it is not well understood whether strain virulence correlates with particular genotypes. In this study, we assessed the in vitro intracellular growth of 18 M. bovis isolates in bovine macrophages as an indicator of bacterial virulence and sought a relationship with the genotype identified by spoligotyping. We found 14 different spoligotypes—11 were already known and three spoligotypes had never been reported before. We identified 2 clusters that were phylogenetically related, containing 10 and 6 strains, respectively, and 2 orphan strains. Intracellular growth and phagocytic rates of 18 M. bovis strains were heterogeneous. Our results suggest that M. bovis intracellular growth and phagocytosis are independent of the bacterial lineage identified by spoligotyping.

2018 ◽  
Vol 9 ◽  
Author(s):  
Estelle J. Ramchuran ◽  
Anou M. Somboro ◽  
Shimaa A. H. Abdel Monaim ◽  
Daniel G. Amoako ◽  
Raveen Parboosing ◽  
...  

1977 ◽  
Vol 30 (7) ◽  
pp. 576-582 ◽  
Author(s):  
RONALD N. JONES ◽  
PETER C. FUCHS ◽  
THOMAS L. GAVAN ◽  
E. HUGH GERLACH ◽  
ARTHUR BARRY ◽  
...  

2006 ◽  
Vol 13 (6) ◽  
pp. 611-619 ◽  
Author(s):  
W. R. Waters ◽  
M. V. Palmer ◽  
T. C. Thacker ◽  
J. B. Payeur ◽  
N. B. Harris ◽  
...  

ABSTRACT Cross-reactive responses elicited by exposure to nontuberculous mycobacteria often confound the interpretation of antemortem tests for Mycobacterium bovis infection of cattle. The use of specific proteins (e.g., ESAT-6, CFP-10, and MPB83), however, generally enhances the specificity of bovine tuberculosis tests. While genes for these proteins are absent from many nontuberculous mycobacteria, they are present in M. kansasii. Instillation of M. kansasii into the tonsillar crypts of calves elicited delayed-type hypersensitivity and in vitro gamma interferon and nitrite concentration responses of leukocytes to M. avium and M. bovis purified protein derivatives (PPDs). While the responses of M. kansasii-inoculated calves to M. avium and M. bovis PPDs were approximately equivalent, the responses of M. bovis-inoculated calves to M. bovis PPD exceeded their respective responses to M. avium PPD. The gamma interferon and nitrite responses of M. kansasii-inoculated calves to recombinant ESAT-6-CFP-10 (rESAT-6-CFP-10) exceeded corresponding responses of noninoculated calves as early as 15 and 30 days after inoculation, respectively, and persisted throughout the study. The gamma interferon and nitrite responses of M. bovis-inoculated calves to rESAT-6-CFP-10 exceeded the corresponding responses of M. kansasii-inoculated calves beginning 30 days after inoculation. By using a lipoarabinomannan-based enzyme-linked immunosorbent assay, specific serum antibodies were detected as early as 50 days after challenge with M. kansasii. By a multiantigen print immunoassay and immunoblotting, serum antibodies to MPB83, but not ESAT-6 or CFP-10, were detected in M. kansasii-inoculated calves; however, responses to MPB83 were notably weaker than those elicited by M. bovis infection. These findings indicate that M. kansasii infection of calves elicits specific responses that may confound the interpretation of bovine tuberculosis tests.


Vaccine ◽  
2014 ◽  
Vol 32 (45) ◽  
pp. 5998-6004 ◽  
Author(s):  
Richard Copin ◽  
Mireia Coscollá ◽  
Efstratios Efstathiadis ◽  
Sebastien Gagneux ◽  
Joel D. Ernst

Nematology ◽  
2004 ◽  
Vol 6 (3) ◽  
pp. 375-387 ◽  
Author(s):  
N. Aileen Ryan ◽  
Peter Jones

AbstractSeventy bacteria, isolated from the rhizosphere of the potato cyst nematode (PCN) host plant, potato, were cultured in the presence and absence of potato root leachate (PRL) and the resultant culture filtrates were analysed for their ability to affect the hatch in vitro of the two PCN species. Of the isolates tested, nine had a significant effect on PCN hatch. Six affected Globodera pallida hatch and three affected G. rostochiensis hatch. Five of the isolates significantly increased hatch only when cultured in the presence of PRL. Three of the isolates decreased PCN hatch significantly in PRL. Only one isolate increased hatch significantly in the absence of PRL. No isolate affected the hatch of both species. Six of the nine isolates that significantly affected PCN hatch had been pre-selected by culturing on PRL. Bacterial isolates from PCN non-hosts (14 from wheat, 17 from sugar beet) were also tested for hatching activity. The principal effect of the hatch-active isolates from the PCN non-host plants was to increase PCN hatch in the presence of PRL. In contrast to the host bacteria results, the isolates from non-host plants affected only G. rostochiensis hatch (three wheat isolates and four sugar beet isolates significantly increased G. rostochiensis hatch); no such isolate affected G. pallida hatch significantly in the presence of PRL. Ten isolates (32%) from non-host plants had the ability to increase significantly the hatch of PCN in the absence of PRL (eight of these affected G. rostochiensis hatch and four affected G. pallida hatch), compared to only one bacterial isolate (1%) from a host plant. The majority of the isolates from non-hosts produced PCN species-specific effects, as with the bacteria isolated from potatoes, although two wheat isolates increased the hatch of both species significantly in the absence of PRL. Of 20 hatch-active bacterial isolates (from all three plants) identified, 70% were Bacillus spp. Other genera identified were Arthrobacter , Acinetobacter and Staphylococcus .


2005 ◽  
Vol 49 (6) ◽  
pp. 2533-2535 ◽  
Author(s):  
Paul H. Edelstein ◽  
Baofeng Hu ◽  
Martha A. C. Edelstein

ABSTRACT LBM415 activity against extracellular and intracellular Legionella pneumophila was studied. The LBM415 MIC50 for 20 Legionella sp. strains was 4 μg/ml, versus 0.06, 0.25, and ≤ 0.03 μg/ml for azithromycin, erythromycin, and levofloxacin, respectively. LBM415 (0.5 and 16 μg/ml) reversibly prevented intracellular growth of two L. pneumophila strains and was less active than erythromycin.


1992 ◽  
Vol 3 (4) ◽  
pp. 193-201 ◽  
Author(s):  
George G Zhanel ◽  
Daryl J Hoban ◽  
Godfrey KM Harding

Antimicrobial activity is not an ‘all or none’ effect. An increase in the rate and extent of antimicrobial action is usually observed over a wide range of antimicrobial concentrations. Subinhibitory antimicrobial concentrations are well known to produce significant antibacterial effects, and various antimicrobials at subinhibitory concentrations have been reported to inhibit the rate of bacterial growth. Bacterial virulence may be increased or decreased by subinhibitory antimicrobial concentrations by changes in the ability of bacteria to adhere to epithelial cells or by alterations in bacterial susceptibility to host immune defences. Animal studies performed in rats, hamsters and rabbits demonstrate decreased bacterial adherence, reduced infectivity and increased survival of animals treated with subinhibitory antimicrobial concentrations compared to untreated controls. The major future role of investigation of subinhibitory antimicrobial concentrations will be to define more fully, at a molecular level, how antimicrobials exert their antibacterial effects.


1984 ◽  
Vol 25 (4) ◽  
pp. 401-404 ◽  
Author(s):  
G M Eliopoulos ◽  
A Gardella ◽  
P DeGirolami ◽  
R C Moellering

Author(s):  
Reyna Cristina Zepeda-Gurrola ◽  
Gerardo Vázquez-Marrufo ◽  
Xianwu Guo ◽  
Isabel Cristina Rodríguez-Luna ◽  
Alejandro Sánchez-Varela ◽  
...  

: Salmonella enterica is the etiological agent of salmonellosis, with a high infection rate worldwide. In Mexico, ST213 genotype of S. enterica ser. Typhimurium is displacing the ancestral ST19 genotype. Bacterial cytoskeleton protein complex MreBCD play an important role in S. enterica pathogenesis, but underlying mechanisms are unknown. In this study, 106 interactions among MreBCD and 15 proteins from S. Typhimurium Pathogenicity Islands 1 (SP-I) and 2 (SP-2) involved in both bacterial virulence and stress response were predicted in ST213 and ST19 genotypes, of which 12 interactions were confirmed in vitro. In addition, gene cluster analysis in 100 S. Typhimurium genomes was performed for these genes. The in silico and in vitro results showed a novel MreBCD interactome involved in the regulation of pathogenesis and stress response through interactions with virulence factors located at SPI-1 and SPI-2. Furthermore, both pseudogene presence and sequence variations in four tested proteins between genotypes resulted in differential interaction patterns that are involved in Salmonella motility and survival in eukaryotic cells, which could explain replacement of ST19 by ST213 in Mexico.


Sign in / Sign up

Export Citation Format

Share Document