scholarly journals Effect of Soil Texture on Water Movement of Porous Ceramic Emitters: A Simulation Study

Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 22 ◽  
Author(s):  
Yaohui Cai ◽  
Xiao Zhao ◽  
Pute Wu ◽  
Lin Zhang ◽  
Delan Zhu ◽  
...  

Choosing reasonable design parameters for ceramic emitters used in subsurface irrigation is important for reducing the deep percolation of water and improving the water use efficiency. Laboratory experiments and numerical simulations with the HYDRUS-2D software were carried out to analyze the effect of soil texture on the infiltration characteristics of porous ceramic emitters used for subsurface irrigation. HYDRUS-2D predictions of emitter discharge in soil and wetting front are in agreement with experimental results, and the HYDRUS-2D model can be used to accurately simulate soil water movement during subsurface irrigation with ceramic emitters in different soil textures. Results show that soil texture has a significant effect on emitter discharge, soil matrix potential around the emitter, and wetting front. For 12 different soil textures, the aspect ratio of the wetting front is basically between 0.84–1.49. In sandy soil, the wetting front mainly appears as an ellipse; but in the clay, the wetting front is closer to a circle. As irrigation time increases, emitter discharge gradually decreases to a stable value; however, emitter discharge in different texture soils is quite different. In order to improve the crop water use efficiency in sandy soil, soil water retention can be improved by adding a clay interlayer or adding water retention agent, reducing the risk of deep percolation and improving the water use efficiency.

Author(s):  
Fatima Sadoon Mushab ◽  
Sabah Anwer Almasraf

Subsurface soil water retention (SWRT) is a recent technology for increasing the crop yield, water use efficiency and then the water productivity with less amount of applied water. The goal of this research was to evaluate the existing of SWRT with the influence of surface and subsurface trickle irrigation on economic water productivity of cucumber crop. Field study was carried out at the Hawr Rajab district of Baghdad governorate from October 1st, to December 31st, 2017. Three experimental treatments were used, treatment plot T1 using SWRT with subsurface trickle irrigation, plot T2 using SWRT with surface trickle irrigation, while plot T3 without using SWRT and using surface tickle irrigation system. The obtained results showed that the economic water productivity in plot T1 was greater than plots T2 and T3. The increasing value was about 65 % and 124 %, respectively. The benefit of the installing SWRT along with subsurface trickle irrigation in the crop root zone assisted to keep the water, nutrients and fertilizers during the root zone profile, improving the field water use efficiency and then the parameter of water productivity.


2014 ◽  
Vol 152 (1) ◽  
pp. 98-114 ◽  
Author(s):  
Robert Hommel ◽  
Rolf Siegwolf ◽  
Matthias Saurer ◽  
Graham D. Farquhar ◽  
Zachary Kayler ◽  
...  

2018 ◽  
Vol 24 (7) ◽  
pp. 64 ◽  
Author(s):  
Sabah Anwer Almasraf ◽  
Ali Hassan Hommadi

Utilizing the modern technologies in agriculture such as subsurface water retention techniques were developed to improve water storage capacities in the root zone depth. Moreover, this technique was maximizing the reduction in irrigation losses and increasing the water use efficiency. In this paper, a polyethylene membrane was installed within the root zone of okra crop through the spring growing season 2017 inside the greenhouse to improve water use efficiency and water productivity of okra crop. The research work was conducted in the field located in the north of Babylon Governorate in Sadat Al Hindiya Township seventy-eight kilometers from Baghdad city. Three treatments plots were used for the comparison using surface trickle irrigation system: Polyethylene sheet (SWRT) was used in plot T1, controlled irrigation in plot T2 and uncontrolled irrigation in plot T3. Irrigation quantities, time of irrigation, soil water contents were measured for all treatments plots. The results indicated that water use efficiency for the three experimental plots, T1, T2, and T3 were: 2.43, 1.94 and 0.98 kg/m3, respectively.  The increasing value in water use efficiency of T1 plot compared with T2 and T3 plots were 25 and 148 %, respectively. Additionally, the water productivity of okra crop for T1, T2, and T3 plots was: 12800.9, 8744.8, and 4736.3 ID/m3, respectively. The increasing value of the water productivity of T1 compared with plots T2 and T3 was 46 and 170 %, respectively. From this study, the benefit of using membrane sheet below the soil surface resulted in an increase in the value of yield, water use efficiency and water productivity. Moreover, saving water and reduced the water losses by deep percolation were resulted.      


2019 ◽  
Vol 25 (9) ◽  
pp. 54-61
Author(s):  
Fatima Sadoon Mushab ◽  
Sabah Anwer Almasaf

The technology of subsurface soil water retention (SWRT) uses a polyethylene ‎trough that is fixed under the root zone of the plant. It is a modern technology to increase the values of water ‎use efficiency, plant productivity and saving irrigation water by applying as little irrigation water ‎as possible. This study work aims at improving the crop yield and water use efficiency of a cucumber plant with less applied irrigation water by installing membrane trough below the soil surface. The field experiment was conducted in the Hawr Rajab District of ‎Baghdad Governorate in Winter 2018 for testing various trickle irrigation ‎systems. Two agricultural ‎treatment plots were utilized in a greenhouse for the comparison. Plot T1 has used ‎a subsurface trickle irrigation together with membrane trough.  Plot T2 has used only ‎surface trickle irrigation system without using SWRT. The total area of the plots T1and T2 was 13.2 ‎m2 and 6.66 m2, respectively. The obtained results of the study confirmed that the plot T1 satisfies values greater than plot ‎T2 in terms of crop yield, field water use efficiency and in saving the applied irrigation water. The increase rate of field water use efficiency and crop yield in plot T1 compared with plot T2 was 103 %, ‎and 24 %, respectively. Additionally, the increase rate in saving the applied irrigation water ‎in plot T1 comparing with plot T2 was 64 %. The installation of the membrane trough below the plant’s root zone together with subsurface trickle irrigation system assisted in keeping the water, nutrients, and fertilizers during the root zone profile, improving the field water use efficiency and then the parameter of water productivity. ‎  Subsurface trickle irrigation, subsurface water retention technology, yield, ‎water use efficiency.


2019 ◽  
Vol 32 (1) ◽  
pp. 1-14
Author(s):  
Wisam B. Hasan ◽  
Ali H. Dheyab ◽  
Nihad Sh. Sultan

A field experiment was conducted in Qurnah district, Basrah province on clay soil to study the effect of six treatments of emulsifying petroleum derivatives with irrigation water by using emulsifying agent adding directly to soil surface, gas oil with two ratios of 0.3% (g3) and 0.5% (g5) w/w of soil dry weight, two admixture treatments of fuel oil and gas oil (1:1) with two ratio 0.3%(go3) and 0.5% (go5), fuel oil 0.3% (o3) and control treatment 0% (c) without any addition. The effect of water deficit factor also studied with two levels 0.85 (w1) and 0.65 (w2) of available water by using drip irrigation with two emitters; low discharge 5 Lhr-1 (Ld) and high discharge 15Lhr-1(Hd). The results showed that all emulsified derivative conditioners significantly increased  dry weight, grain yield and water use efficiency calculated for dry weight WUE (d) and grain WUE (g) of sunflower compared with control treatment, especially at g5 and go5 treatments which recorded the highest values. Soil capability for saving water and available water increased as a result of the addition of emulsified oil derivatives, which contributed to increase the interval time between irrigation periods and reduce the quantity of irrigation water with less value appearing at g5 and go5 under 65% water deficit treatment by using 15 Lhr-1 emitter discharge. Increasing emitter discharge from  5 to 15 L hr -1, and increasing irrigation deficit from 0.65 to 0.85 led to increasing all growth parameters, except water use efficiency.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 422 ◽  
Author(s):  
Ausiku P. Ausiku ◽  
John G. Annandale ◽  
J. Martin Steyn ◽  
Andrew J. Sanewe

Management of nitrogen and water plays a significant role in increasing crop productivity. A large amount of nitrogen (N) may be lost through leaching if these resources are not well managed. Wetting front detectors (WFDs) and Chameleon soil water sensors were used to adapt water and nitrogen applications with the goal of increasing millet yields, as well as nitrogen and water use efficiency. The trials were laid out as a randomized complete block design with factorial combinations of water and N, and included the following treatments: irrigation to field capacity (fortnightly and weekly), adaptive-water application based on sensor response or rainfed, and N treatments included either fixed nitrogen levels (0, 45, 90 kg N ha−1) or an adaptive-N rate, depending on N content of the soil solution extracted from WFDs. Adaptive management aims to steer water and nitrogen applications towards optimum crop requirements. Treatments that received both high water and nitrogen outperformed other treatments by 11% to 68% in terms of biomass production and 16% to 54% in grain yield, while water use efficiency and irrigation use efficiency values were also higher, ranging from 1.58 to 7.94 kg m−3 and 1.43 to 8.30 kg m−3. Results suggest that integrated adaptive water and nitrogen management should be considered to reduce high N losses and cost of crop production, without a meaningful yield penalty, relative to high production input management.


2017 ◽  
Vol 13 (1) ◽  
pp. 51-68
Author(s):  
Mohammad Naderianfar ◽  
Majid Azizi ◽  
Shapour Koohestani

Basil (Ocimum basilicum L.) is one of the important aromatic plants belonging to the family Lamiaceae, which is used as an herb, spice as well as fresh vegetable.The present study was performed to determine the irrigation depth index under different management conditions with evaluating the effect of deficit irrigation, soil texture and nano fertilization on basil. The experiment was performed as a factorial based on randomized complete block design (RCBD) with 18 treatments and three replications at weather station, Ferdowsi University of Mashhad. Deficit irrigation treatments consisted of three levels of irrigation (I1=100% ETc), (I2=75% ETc), (I3=50%ETc) and three levels of nano fertilizers, containing nano fertilizer with full concentration (F1), 70% (F2), and nonusing of nano fertilizer (F3) were implemented in two light soil texture (S1) and medium soil texture (S2). The results showed that the average actual evapotranspiration estimation by REC-P55 device has been equal to 3.38 mm at the beginning of the growing period of basil, which amount has increased to 8.60 mm during basil development in the middle of growth period. The results of crop coefficient analysis showed that the maximum kc of basil (1.42) was detected in July. The results also indicated that the highest water use efficiency (WUE) was obtained in terms of fresh and dry herb yield as 2.06 and 0.37 kg/m3 in S2I3F3 treatment, respectively, while the maximum water use efficiency in terms of seed yield (0.37 kg/m3) was obtained in S1I2F2 treatment. Using the research results, according to different levels of water use of functions of yield Y(w), cost C(w), and benefit B(w) for basil based on mathematical and economic analysis of these functions, irrigation index and optimal irrigation depths were evaluated. It was found that with deficit irrigation under water restriction conditions, with the aim of maximum use of water volume unit, the optimal water consumption depth will be reduced by 20% compared to maximum irrigation mode. Also, with this amount of deficit irrigation, the maximum Rial return per cubic meter of water consumption would be as 1849 Rials.


Sign in / Sign up

Export Citation Format

Share Document