scholarly journals Effect of Emulsifying Petroleum Derivatives, Water Deficit Treatment and Emitters Discharge on Dry Weight, Grain yield and Water use Efficiency of Sunflower (Helianthus annuus L.)

2019 ◽  
Vol 32 (1) ◽  
pp. 1-14
Author(s):  
Wisam B. Hasan ◽  
Ali H. Dheyab ◽  
Nihad Sh. Sultan

A field experiment was conducted in Qurnah district, Basrah province on clay soil to study the effect of six treatments of emulsifying petroleum derivatives with irrigation water by using emulsifying agent adding directly to soil surface, gas oil with two ratios of 0.3% (g3) and 0.5% (g5) w/w of soil dry weight, two admixture treatments of fuel oil and gas oil (1:1) with two ratio 0.3%(go3) and 0.5% (go5), fuel oil 0.3% (o3) and control treatment 0% (c) without any addition. The effect of water deficit factor also studied with two levels 0.85 (w1) and 0.65 (w2) of available water by using drip irrigation with two emitters; low discharge 5 Lhr-1 (Ld) and high discharge 15Lhr-1(Hd). The results showed that all emulsified derivative conditioners significantly increased  dry weight, grain yield and water use efficiency calculated for dry weight WUE (d) and grain WUE (g) of sunflower compared with control treatment, especially at g5 and go5 treatments which recorded the highest values. Soil capability for saving water and available water increased as a result of the addition of emulsified oil derivatives, which contributed to increase the interval time between irrigation periods and reduce the quantity of irrigation water with less value appearing at g5 and go5 under 65% water deficit treatment by using 15 Lhr-1 emitter discharge. Increasing emitter discharge from  5 to 15 L hr -1, and increasing irrigation deficit from 0.65 to 0.85 led to increasing all growth parameters, except water use efficiency.

Author(s):  
Ali Beyhan Ucak ◽  
Tugay Ayasan ◽  
Nizamettin Turan

The present study was carried out to investigate the effects of different water deficit levels applied through growing season on silage yield, quality and water use efficiency (WUE) of main crop silage maize under semi-arid climate conditions during the years 2014 and 2015. Irrigation treatments were set as 100% (I100), 70% (I70) and 35% (I35) supply of depleted water within 0-90 cm effective root zone in 7-day intervals. Applied irrigation water quantities in I100(control) treatment of the first and second year (in 8 irrigations) were respectively observed as 693 and 666 mm. Plant water consumptions in control treatment were respectively measured as 770 and 738 mm. Silage yield was 10650 kg da−1 in the first year and 10600 kg da−1 in the second year. The silage yield obtained from I70 treatment with 30% water deficit was statistically placed in group (B) following I100 (control) treatment. The water deficits over 30% resulted in significant decreases in silage yield and quality. The correlation coefficient between ETa and dry matter was respectively identified as (r: 0.78), (r: 0.87) in 2014 and 2015 and the correlation coefficient between plant water consumption (ETa) and protein content was respectively identified as (r:0.81), (r:0.80) and the correlations between ETa and quality parameters were found to be positive and highly significant. There were significant linear correlations between ETa and kernel yield (Y). Yield response factor (ky) of experimental years were respectively calculated as 0.74 and 1.06. Irrigation water use efficiency (IWUE) values varied between 3.80-5.10 kg da−1 mm and water use efficiency (WUE) values varied between 3.62 and 4.42 kg da−1 mm.


Author(s):  
Aleš Jezdinský ◽  
Robert Pokluda ◽  
Katalin Slezák

In the trial the effect of nitrogen deficiency and potassium surplus on the dry weight, photosynthetic activity (A), transpiration (E), stomatal conductance (gs) and water use efficiency (WUE) were examined. The macroelement content of aboveground parts were analysed, too. The plants were grown in pots filled by pure Sphagnum peat. The top-dressing started in the 3-leave stage of plants, with different solution (every irrigation): control treatment: 0.28 g N, 0.097 g P (0.22 g P2O5), 0.42 g K (0.50 g K2O) per litre; nitrogen-deficiency: 0.097 g P (0.22 g P2O5), 0.42 g K (0.50 g K2O) per litre; potassium surplus: 0.28 g N, 0.097 g P (0.22 g P2O5), 0.83 g K (1.0 g K2O) per litre. The transplants grown in the commercial fertilization technology (control treatment) almost in every evaluated parameters shown average value. The potassium surplus resulted significantly higher transpiration activity (2.58 mmol H2O. m−2. s−1) and photosynthetic activity (11.54 μmol CO2. m−2. s−1) than the nitrogen deficiency (E: 1.91 mmol H2O. m−2. s−1and A: 9.01 μmol CO2. m−2. s−1), but without significant differences with control treatment. The N, P and K content of aboveground parts was significantly lower in the nitrogen deficiency treatment, than in the case of the potassium surplus, too. The effect of treatments on the dry weight of the plants, the stomatal conductance and the water use efficiency was not proven statistically.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xin Jia ◽  
Ke Mao ◽  
Ping Wang ◽  
Yu Wang ◽  
Xumei Jia ◽  
...  

AbstractWater deficit is one of the major limiting factors for apple (Malus domestica) production on the Loess Plateau, a major apple cultivation area in China. The identification of genes related to the regulation of water use efficiency (WUE) is a crucial aspect of crop breeding programs. As a conserved degradation and recycling mechanism in eukaryotes, autophagy has been reported to participate in various stress responses. However, the relationship between autophagy and WUE regulation has not been explored. We have shown that a crucial autophagy protein in apple, MdATG8i, plays a role in improving salt tolerance. Here, we explored its biological function in response to long-term moderate drought stress. The results showed that MdATG8i-overexpressing (MdATG8i-OE) apple plants exhibited higher WUE than wild-type (WT) plants under long-term moderate drought conditions. Plant WUE can be increased by improving photosynthetic efficiency. Osmoregulation plays a critical role in plant stress resistance and adaptation. Under long-term drought conditions, the photosynthetic capacity and accumulation of sugar and amino acids were higher in MdATG8i-OE plants than in WT plants. The increased photosynthetic capacity in the OE plants could be attributed to their ability to maintain optimal stomatal aperture, organized chloroplasts, and strong antioxidant activity. MdATG8i overexpression also promoted autophagic activity, which was likely related to the changes described above. In summary, our results demonstrate that MdATG8i-OE apple lines exhibited higher WUE than WT under long-term moderate drought conditions because they maintained robust photosynthesis, effective osmotic adjustment processes, and strong autophagic activity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. A. Gomaa ◽  
Essam E. Kandil ◽  
Atef A. M. Zen El-Dein ◽  
Mamdouh E. M. Abou-Donia ◽  
Hayssam M. Ali ◽  
...  

AbstractIn Egypt, water shortage has become a key limiting factor for agriculture. Water-deficit stress causes different morphological, physiological, and biochemical impacts on plants. Two field experiments were carried out at Etay El-Baroud Station, El-Beheira Governorate, Agriculture Research Center (ARC), Egypt, to evaluate the effect of potassium silicate (K-silicate) of maize productivity and water use efficiency (WUE). A split-plot system in the four replications was used under three irrigation intervals during the 2017 and 2018 seasons. Whereas 10, 15, and 20 days irrigation intervals were allocated in main plots, while the three foliar application treatments of K-silicate (one spray at 40 days after sowing; two sprays at 40 and 60 days; and three sprays at 40, 60, and 80 days, and a control (water spray) were distributed in the subplots. All the treatments were distributed in 4 replicates. The results indicated that irrigation every 15 days gave the highest yield in both components and quality. The highly significant of (WUE) under irrigation every 20 days. Foliar spraying of K-silicate three times resulted in the highest yield. Even under water-deficit stress, irrigation every fifteen days combined with foliar application of K-silicate three times achieved the highest values of grain yield and its components. These results show that K-silicate treatment can increase WUE and produce high grain yield requiring less irrigation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fuqiang Li ◽  
Haoliang Deng ◽  
Yucai Wang ◽  
Xuan Li ◽  
Xietian Chen ◽  
...  

AbstractThe effects of the amount and timing of regulated deficit drip irrigation under plastic film on potato (‘Qingshu 168’) growth, photosynthesis, yield, water use efficiency, and quality were examined from 2017 to 2019 in cold and arid northwestern China. In the four stages of potato growth (seedling, tuber initiation, tuber bulking, starch accumulation), eight treatments were designed, with a mild deficit was in treatments WD1 (seedling), WD2 (tuber initiation), WD3 (tuber bulking), and WD4 (starch accumulation); and a moderate deficit in WD5 (seedling), WD6 (tuber initiation), WD7 (tuber bulking), and WD8 (starch accumulation). The net photosynthetic rate, stomatal conductance, and transpiration rate decreased significantly under water deficit in the tuber formation and starch accumulation stages. Although water deficit reduced potato yields, a mild deficit in the seedling stage resulted in the highest yield and water use efficiency at 43,961.91 kg ha−1 and 8.67 kg m−3, respectively. The highest overall quality was in potatoes subjected to mild and moderate water deficit in the seedling stage. Principal component analysis identified mild water stress in the seedling stage as the optimum regulated deficit irrigation regime. The results of this study provide theoretical and technical references for efficient water-saving cultivation and industrialization of potato in northwestern China.


2012 ◽  
Vol 212-213 ◽  
pp. 578-585
Author(s):  
Zhong Wen Yang ◽  
Jun Ying Jin ◽  
Xin Yi Xu

Water stress is an important approach to use water resources efficiently and remit the agricultural water shortage. Hemarthria compressa is one of perennial grasses, a pasture of high quality, which has abundant species resources in China. To explore the response of the growth, yield and water use efficiency(WUE) of Hemarthria compressa under water stress, this study, adapting pot experiment, imposed three water stress degree (LD, MD and SD) treatments and a control treatment on Hemarthria compressa. The data of growth indicators during control period, yield and total water consumption were obtained. The results show a noticeable inhibitory action of water stress on the growth of Hemarthria compressa. Along with the intensifying of water stress, plant height increment, leaf area, total biomass, dry matter of each organ and yield decreased, and the root-shoot ratio increased firstly and inclined to slump finally. Plants under the middle water stress treatment achieved the greatest WUE of 38.25 kg/m3. The first 10d in the water control period was the most sensitive period of the pasture responding to water stress.


Sign in / Sign up

Export Citation Format

Share Document