scholarly journals Characteristics of Stormwater Quality in Singapore Catchments in 9 Different Types of Land Use

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1089 ◽  
Author(s):  
Haihong Song ◽  
Tingchao Qin ◽  
Jianbin Wang ◽  
Tony H. F. Wong

Stormwater quality is well known for its highly stochastic nature and not necessarily well explained by mechanistic urban build up and wash off models. Therefore, local empirical data (based on land use) are an essential compliment to statistical analyses of global data. This paper reports on a large-scale monitoring of the 12 key water quality parameters of suspended solids, nutrients, and heavy metals for stormwater runoff in urban discharges from nine urban land uses with varying sizes in Singapore. It was found that, in general, the average of the event mean concentrations for total nitrogen, total phosphorus, total organic carbon, total suspended solids (TSS), and phosphate in parkland land use were higher than the other eight studied land uses. Based on Pearson’s correlation analysis, significant correlation between pairs of water quality parameters was observed. Particularly, there was significant correlation between TSS and most of the other tested water quality parameters in all land uses. A pollutant data set from this study will assist in developing appropriate stormwater quality models, guide the establishment of stormwater treatment objectives and preliminary designs for Singapore catchments, as well as provide an essential complement to statistical analyses of global data for stormwater characteristics.

2015 ◽  
Vol 20 (2) ◽  
pp. 54-60 ◽  
Author(s):  
S. Gyawali ◽  
K. Techato ◽  
S. Monprapusson

The study investigated the linkages between land uses and water quality in U-tapao river basin, Thailand, in order to examine the impact of land use changes on full -basin, sub-watershed and buffer zone scales (1000m, 500m and 200m) on river water quality through Geographical Information Systems (GIS) and statistical analyses. Correlation and regression analysis were applied for ten water quality parameters. In scale analysis, in the most cases, the sub-watershed scale showed the clear relationship between land use water quality rather than full-basin and buffer zone scales. This indicates that the level of relationship between land use and water quality depends upon scale therefore the relationship between water quality parameters and land uses should be studied in multiple scales and it helps to develop effective river basin management in future.Journal of Institute of Science and Technology, 2015, 20(2): 54-60


FLORESTA ◽  
2021 ◽  
Vol 51 (2) ◽  
pp. 283
Author(s):  
Elenice Fritzsons ◽  
Luis Eduardo Mantovani

AbstractThe water quality of a drainage basin depends on the vegetation and soil of the region, land use and riparian forests, which act as a filter to protect the watercourse. For three years, we monitored several water quality parameters (turbidity, color, pH, conductivity, dissolved solids, alkalinity, and nitrate and chloride concentrations) in six adjacent microbasins to assess how riparian forests and land use affect water quality. The location is part of the Atlantic forest biome, with high-altitude humid subtropical climate and mixed ombrophilous forests. We designed a land use charter of the basin and a conflict map for fluvial permanent preservation areas. Land use included mainly natural forests, forestry, buildings, agriculture, and pastures. The multiple correlation analyses included: the water quality parameters, conflicts with permanent preservation areas, and land uses in river basins. In 51% of the basin, land uses complied with fluvial PPA legislation, but in 49% we found conflicts with other land use typologies and a lack of riparian forests. The quality of the water changed throughout the seasons and when fluvial PPAs conflicted with agriculture, buildings, and pastures. The different land uses in the basins did not influence the parameters of water quality and the same occurred with precipitation on water quality.


2015 ◽  
Vol 41 (1) ◽  
pp. 13-19
Author(s):  
Kaniz Fatema ◽  
Wan Maznah Wan Omar ◽  
Mansor Mat Isa

Water quality in three different stations of Merbok estuary was investigated limnologically from October, 2010 to September, 2011. Water temperature, transparency and total suspended solids (TSS) varied from 27.45 - 30.450C, 7.5 - 120 cm and 10 -140 mg/l, respectively. Dissolved Oxygen (DO) concentration ranged from 1.22-10.8 mg/l, while salinity ranged from 3.5-35.00 ppt. pH and conductivity ranged from 6.35 - 8.25 and 40 - 380 ?S/cm, respectively. Kruskal Wallis H test shows that water quality parameters were significantly different among the sampling months and stations (p<0.05). This study revealed that DO, salinity, conductivity and transparency were higher in wet season and TSS was higher in dry season. On the other hand, temperature and pH did not follow any seasonal trends.Bangladesh J. Zool. 41(1): 13-19, 2013


2021 ◽  
Vol 933 (1) ◽  
pp. 012010
Author(s):  
S A Nurhayati ◽  
M Marselina ◽  
A Sabar

Abstract Increasing population growth is one of the impacts of the growth of a city or district in an area. This also happened in the Cimahi watershed area. As the population grows, so does the need for land which increases the land-use change in the Cimahi watershed. Land-use changes will affect the surrounding environment and one of them is the river, especially river water quality. As a watershed area, there is one main river that is the source of life as well as the Cimahi watershed, whose main river is the Cimahi River. The purpose of this study was calculated the relationship between land-use change in the Cimahi watershed and the water quality parameters of the Cimahi River. The correlation between the two was calculated using Pearson correlation. Water quality parameters can be seen based on BOD and DO values. BOD and DO values are the opposite because good water quality has high DO values and low BOD values. The correlation between land-use change and BOD was 0.328 is in the area of settlements area. In contrast, to DO values, an increase in settlements/industrial zones will further reduce DO values so that both have a negative correlation, which is indicated by a value of -0,535. The correlation between settlements with pH and temperature values is 0.664 and 0.812. While the correlation between settlements with TSS and TDS values are 0.333 and 0.529, respectively. In this study, it can be seen that there is a relationship between the decline in water quality and changes in land use.


2020 ◽  
Vol 95 ◽  
pp. 103766 ◽  
Author(s):  
Mohsen Mirzaei ◽  
Ali Jafari ◽  
Mehdi Gholamalifard ◽  
Hossein Azadi ◽  
Sharif Joorabian Shooshtari ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2618
Author(s):  
Johann Alexander Vera Mercado ◽  
Bernard Engel

Land use influences water quality in streams at different spatial scales and varies in time and space. Water quality has long been associated with agricultural and urban land uses in catchments. The effects of developed, forest, pasture, and agricultural land use on nitrogen, nitrate, and nitrite (NNN); total phosphorus (TP); total suspended solids (TSS); chemical oxygen demand (COD); dissolved oxygen (DO) and total Kjeldahl nitrogen (TKN) concentrations and their sensitivity were quantified to spatial pattern differences. The linear mixed modeling framework was used to examine the importance of spatial extent on models with water quality parameters as the response variable and land use types as the predictor variable. The results indicated that land use categories on different water quality parameters were significant and dependent on the selected spatial scales. Land use exhibited a strong association with total phosphorus and total suspended solids for close reach distances. Phosphorus is not highly soluble, and it binds strongly to fine soil particles, which are transported by water via runoff. Nitrogen, nitrate, and nitrite, dissolved oxygen, chemical oxygen demand, and total Kjeldahl nitrogen concentrations were better predicted for further reach distances, such as 45 or 50 km, where the best model of nitrogen, nitrate, and nitrite is consistent with the high mobility of NO3−.


Author(s):  
Md. Golam Sajed Riar ◽  
Nur- A Raushon ◽  
Sumit Kumer Paul

Growth performance and survival of Tor putitora fry under different stocking densities were evaluated fry rearing system. The experimental period was 10 weeks from 31 December to 10 March 2019. The experiment was carried out in nine earthen ponds of 0.04 ha each under three treatments with three replications.  Thirty days old fry were stocked at the rate of 1.0X105/ha was designated as treatment- 1 (T1), 1.5X105/ha` as treatment- 2 (T2) and 2.0X105/ha as treatment- 3 (T3), respectively. Fry were fed with commercially available nursery feed containing 32% crude protein. It was observed that, lower stocking density showed highest daily weight gain in T1 (growth 0.066 ± 0.006 g/day) compared with higher stocking density in T2 (growth 0.044 ± 0.004 g/day) and T3 (growth 0.024 ± 0.003 g/day), respectively. It is also noticed that, the lower stocking showed the highest survival rate (79.66 ± 4.34 %) than the other two treatments (66.97±3.67 and 54.67± 3.12 %). The values of different water quality parameters were within the optimum ranges for the rearing of carp fry. Water quality parameters did not show significant variations in the experimental ponds under different stocking densities. Among these three stocking densities lower stocking density (T1) showed the best result compare with the other two higher stocking densities.


2021 ◽  
Vol 43 (10) ◽  
pp. 664-678
Author(s):  
Hyeon Woo Go ◽  
Jin Chul Joo ◽  
Dong Hwi Lee ◽  
Chae Min Ahn ◽  
Sun Hwa Choi ◽  
...  

Objectives : In this study, the characteristics of stormwater runoff from agricultural nonpoint pollution sources investigated under various experimental conditions were evaluated among different land use types (e.g., paddy, field, field (alpine), and vinyl house), and event mean concentrations (EMCs) for each water quality parameter were statistically analyzed. These results can be used in calculating the contribution of stormwater runoff to water quality of receiving water body by performing quantitative and qualitative analysis. The unit loads calculated were compared with Ministry of Environment TMDL (2019) to secure the reliability of the calculated unit loads.Methods : EMCs and unit loads investigated in various studies were classified in terms of paddy, field, field (alpine), and vinyl house. Among various land use types, EMCs and unit loads were statistically analyzed quantitatively and qualitatively. For EMCs, a null hypothesis is that ‘EMCs of water quality parameters among different land use types are not different at a statistically significant level (α=0.05)’. Based on the results of statistical analysis, heteroscedasticity (p<0.05) and Welch-test method were consequently applied, and post hoc test was performed using the Games-Howell method. Finally, unit loads was compared and reviewed against the TMDL (2019) unit loads of the Ministry of Environment.Results and Discussion : Various EMCs in all water quality parameters were found among different land use types (i.e., paddy, field, field (alpine) and vinyl house). For most water quality parameters, EMCs tended to decrease in the order of field (alpine) > field > vinyl house > paddy. The coefficient of variance (CV) values of all water q uality parameters were 0.5 or greater. Based on these results, EMCs in agricultural nonpoint source pollution are very diverse and deviated due to the combination of natural and artificial factors. Post hoc test results indicated different statistical significance among all water quality parameters. In addition to the land use types, both natural factors (i.e., season, rainfall, antecedent rainfall day, and, rainfall runoff rate) and artificial factors (i.e., cultivator manipulation, emission route, type of crop, and amount of compost) affect the characteristics of stormwater runoff. In particular, in the case of field (alpine) with prominent topographical feature of slope, and EMCs were statistically greater than those from other land use types in all water quality categories (p<0.05).Conclusions : Countermeasures for field (alpine)with greater EMCs than paddy, field and vinyl house, should be performed priority. EMCs were affected by a complex interaction between natural factors (i.e., season, rainfall, antecedent rainfall day, and, rainfall runoff rate) and artificial factors (i.e., cultivator manipulation, emission route, type of crop, and amount of compost), and additional data and research are required for further study to elucidate these complex interactions.


2020 ◽  
Vol 55 (3) ◽  
pp. 261-277
Author(s):  
Lin Gao ◽  
Junyu Qi ◽  
Sheng Li ◽  
Glenn Benoy ◽  
Zisheng Xing ◽  
...  

Abstract Potential errors or uncertainties of annual loading estimations for water quality parameters such as suspended solids (SS), nitrate-nitrogen (NO3-N), ortho-phosphorus (Ortho-P), potassium (K), calcium (Ca), and magnesium (Mg) can be greatly affected by sampling frequencies. In this study, annual loading estimation errors were assessed in terms of the coefficient of variation, relative bias, and probability of potential errors that were estimated with statistical samples taken at a series of sampling frequencies for a watershed in northwestern New Brunswick, Canada, and one of its sub-watersheds. Results indicate that annual loading estimation errors increased with decreasing sampling frequency for all water quality parameters. At the same sampling frequencies, the estimation errors were several times greater for the smaller watershed than those for the larger watershed, possibly due to the flushing nature of streamflows in the smaller watershed. We also found that low sampling frequency tended to underestimate the annual loadings of water quality parameters dominated by stormflow events (SS and K) and overestimate water quality parameters dominated by baseflow (Mg and Ca). These results can be used by hydrologists and water quality managers to determine sampling frequencies that minimize costs while providing acceptable estimation errors. This study also demonstrates a novel approach to assess potential errors when analyzing existing water quality data.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 44
Author(s):  
Noorjima Abd Wahab ◽  
Mohd Khairul Amri Kamarudin ◽  
Mohd Ekhwan Toriman ◽  
Frankie Marcus Ata ◽  
Hafizan Juahir ◽  
...  

Terengganu River Basin is situated in the north eastern coastal region of Peninsular Malaysia. 29 sampling stations were selected. The water quality parameters were measured such as Dissolved Oxygen (DO), Total Suspended Solids (TSS) and Suspended Sediment Concentration (SSC). Results showed that the range of DO (2.11 mg/L – 8.07 mg/L), TSS (0.4 mg/L – 128.2 mg/L) and SSC (0.07 mg/L – 25.6 mg/L). The distribution of land use and land cover activities effected to the level of water quality in watersheds. The analyses of variance (ANOVA) was applied and provide a better understanding for the complex relationships among water quality parameters. Graphical data helps a better view of the overall analysis to appoint sources of pollutants to their effect. Terengganu River Basin is a shallow and has a sensitive ecosystem that responds to the land use changes and development activities of its surroundings. Water quality analysis showed that TSS and SSC were higher in the dry season but DO were higher in the wet season. Overall, the water in the Terengganu River Basin classified slightly contaminated especially the main sources of pollutants were possibly waste products and waste from development activities such as sand mining, farming, residential and agricultural.  


Sign in / Sign up

Export Citation Format

Share Document