scholarly journals Hydrological Components Variability under the Impact of Climate Change in a Semi-Arid River Basin

Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1122 ◽  
Author(s):  
Xuan Zhang ◽  
Yang Xu ◽  
Fanghua Hao ◽  
Chong Li ◽  
Xiao Wang

With increased attention paid to the changes of global climate, the impacts on hydrological processes remain poorly understood in specific basins. In this study, we selected Luanhe River Basin, which is an important source of water supply to Beijing and Hebei, as a case study for the analysis of the combined impact of precipitation and temperature change to hydrological components in a semi-arid river basin. This study investigated the change of the blue water flow (BWF), green water flow (GWF), and green water storage (GWS) by employing the SWAT (Soil and Water Assessment Tool) model and stochastic methods in different time scales during 1960 to 2017. The contribution of climate changes to hydrological change were quantified by 16 hypothetical scenarios by recombining climatic data. The results show that the annual daily maximum and minimum temperature (Tmax, Tmin) increased while their differences (DTR) decreased. However, there was no significant trend in annual precipitation and hydrological components. The trend of precipitation has a positive impact to the change of all three hydrological components. Although precipitation contributes more to changes in hydrological components, more attention also needs to be given to the change of DTR, which has positive impact of GWF that contrasts with that of BWF and GWS. Seasonal scale studies of these changes suggested that more attention should be paid to the climate change in spring and winter when the hydrological components were more sensitive to climate change. Our results summarized hydrological components variability under the impact of climate change and demonstrated the importance of analyses at different time scales, which was expected to provide a reference for water resources management in other semi-arid river basins.

2021 ◽  
Author(s):  
Li Wang ◽  
Fan Zhang ◽  
Guanxing Wang

<p>The impact of climate change on soil erosion is pronounced in high mountain area. In this study, the revised universal soil loss equation (RUSLE) model was improved for better calculation of soil erosion during snowmelt period by integrating a distributed hydrological model in upper Heihe river basin (UHRB). The results showed that the annual average soil erosion rate from 1982 to 2015 in the study area was 8.1 t ha<sup>-1 </sup>yr<sup>-1</sup>, belonging to the light grade. To evaluate the influence of climate change on soil erosion, detrended analysis of precipitation, temperature and NDVI was conducted. It was found that in detrended analysis of precipitation and temperature, the soil erosion of UHRB would decrease 26.5% and 3.0%, respectively. While in detrended analysis of NDVI, soil erosion would increase 9.9%. Compared with precipitation, the effect of temperature on total soil erosion was not significant, but the detrended analysis of temperature showed that the effect of temperature on soil erosion during snowmelt period can reach 70%. These finding were helpful for better understanding of the impact of climate change on soil erosion and provide a scientific basis for soil management in high mountain area under climate change in the future.</p>


2018 ◽  
pp. 70-79 ◽  
Author(s):  
Le Viet Thang ◽  
Dao Nguyen Khoi ◽  
Ho Long Phi

In this study, we investigated the impact of climate change on streamflow and water quality (TSS, T-N, and T-P loads) in the upper Dong Nai River Basin using the Soil and Water Assessment Tool (SWAT) hydrological model. The calibration and validation results indicated that the SWAT model is a reasonable tool for simulating streamflow and water quality for this basin. Based on the well-calibrated SWAT model, the responses of streamflow, sediment load, and nutrient load to climate change were simulated. Climate change scenarios (RCP 4.5 and RCP 8.5) were developed from five GCM simulations (CanESM2, CNRM-CM5, HadGEM2-AO, IPSL-CM5A-LR, and MPI-ESM-MR) using the delta change method. The results indicated that climate in the study area would become warmer and wetter in the future. Climate change leads to increases in streamflow, sediment load, T-N load, and T-P load. Besides that, the impacts of climate change would exacerbate serious problems related to water shortage in the dry season and soil erosion and degradation in the wet season. In addition, it is indicated that changes in sediment yield and nutrient load due to climate change are larger than the corresponding changes in streamflow.


2001 ◽  
Vol 15 (16) ◽  
pp. 3167-3179 ◽  
Author(s):  
Luc Roy ◽  
Robert Leconte ◽  
Fran�ois P. Brissette ◽  
Claude Marche

Water ◽  
2018 ◽  
Vol 10 (5) ◽  
pp. 571 ◽  
Author(s):  
Yuliang Zhou ◽  
Chengguang Lai ◽  
Zhaoli Wang ◽  
Xiaohong Chen ◽  
Zhaoyang Zeng ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2141 ◽  
Author(s):  
Saddique ◽  
Usman ◽  
Bernhofer

Projected climate changes for the 21st century may cause great uncertainties on the hydrology of a river basin. This study explored the impacts of climate change on the water balance and hydrological regime of the Jhelum River Basin using the Soil and Water Assessment Tool (SWAT). Two downscaling methods (SDSM, Statistical Downscaling Model and LARS-WG, Long Ashton Research Station Weather Generator), three Global Circulation Models (GCMs), and two representative concentration pathways (RCP4.5 and RCP8.5) for three future periods (2030s, 2050s, and 2090s) were used to assess the climate change impacts on flow regimes. The results exhibited that both downscaling methods suggested an increase in annual streamflow over the river basin. There is generally an increasing trend of winter and autumn discharge, whereas it is complicated for summer and spring to conclude if the trend is increasing or decreasing depending on the downscaling methods. Therefore, the uncertainty associated with the downscaling of climate simulation needs to consider, for the best estimate, the impact of climate change, with its uncertainty, on a particular basin. The study also resulted that water yield and evapotranspiration in the eastern part of the basin (sub-basins at high elevation) would be most affected by climate change. The outcomes of this study would be useful for providing guidance in water management and planning for the river basin under climate change.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 273 ◽  
Author(s):  
Fatemeh Fadia Maghsood ◽  
Hamidreza Moradi ◽  
Ali Reza Massah Bavani ◽  
Mostafa Panahi ◽  
Ronny Berndtsson ◽  
...  

This study assessed the impact of climate change on flood frequency and flood source area at basin scale considering Coupled Model Intercomparison Project phase 5 General Circulation Models (CMIP5 GCMs) under two Representative Concentration Pathways (RCP) scenarios (2.6 and 8.5). For this purpose, the Soil and Water Assessment Tool (SWAT) hydrological model was calibrated and validated for the Talar River Basin in northern Iran. Four empirical approaches including the Sangal, Fill–Steiner, Fuller, and Slope-based methods were used to estimate the Instantaneous Peak Flow (IPF) on a daily basis. The calibrated SWAT model was run under the two RCP scenarios using a combination of twenty GCMs from CMIP5 for the near future (2020–40). To assess the impact of climate change on flood frequency pattern and to quantify the contribution of each subbasin on the total discharge from the Talar River Basin, Flood Frequency Index (FFI) and Subbasin Flood Source Area Index (SFSAI) were used. Results revealed that the projected climate change will likely lead to an average discharge decrease in January, February, and March for both RCPs and an increase in September and October for RCP 8.5. The maximum and minimum temperature will likely increase for all months in the near future. The annual precipitation could increase by more than 20% in the near future. This is likely to lead to an increase of IPF. The results can help managers and policy makers to better define mitigation and adaptation strategies for basins in similar climates.


Sign in / Sign up

Export Citation Format

Share Document