scholarly journals Concentration Measurement of Uniform Particles Based on Backscatter Sensing of Optical Fibers

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1955 ◽  
Author(s):  
Huang ◽  
Zhang ◽  
Qi ◽  
Liu

A set of miniature optical fiber particle concentration measuring instruments is designed and applied to develop a unified expression for the concentration measurement of uniform particles in tap water. By measuring the concentrations of six uniform silicon carbide particles in the size range of 38–250 μm, the unified relationship between particle size, particle concentration, and optical scattering intensity is proposed. The unified expression is verified by the concentration measurements of silicon carbide particles with three other sizes. The results show that the measurement error is less than 10%, and the unified expression is satisfactory considering the large measuring range of 0–50 kg/m3. The effects of light intensity on the concentration measurement are discussed based on the results of 150 μm silicon carbide particles under three different light intensities. It is shown that a low light intensity can be applied for high-concentration measurement with relatively low accuracy, while a high light intensity can be adopted for low-concentration measurement with higher accuracy.

2012 ◽  
Vol 512-515 ◽  
pp. 951-954
Author(s):  
Bing Bing Fan ◽  
Huan Huan Guo ◽  
Jian Li ◽  
Hai Long Wang ◽  
Ke Bao ◽  
...  

The SiC/Cu composite is one of the "structural-functional" materials. It shows good mechanical properties and very high thermal, high electrical conductivity etc. But the co-dispersion, wetting and bonding between SiC and Cu interface are of practical importance in the preparation of SiC/Cu composites. In this work, surface treatment techniques such as high-temperature oxidation, acid dipping and alkaline wash were adopted separately on silicon carbide particles, in order to improve the wettability and physical and chemical compatibility between silicon carbide and copper, then we used the replacement reaction method and decomposition-reduction reaction method to generate Cu coating on the surface of silicon carbide. The results shown that, the surface of silicon carbide particle which treated by alkaline wash was cleaner and more rough than that only treated by high-temperture oxidation, moreover, the specific surface of the particle was increased, which resulted in a compact layer of Cu coating. for the same silicon carbide particles, the effect of the Cu coating prepared by decomposition reaction method was better than that by reduction reaction method.


2021 ◽  
Vol 1035 ◽  
pp. 768-772
Author(s):  
Jing Kun Li ◽  
Xue Ping Ren ◽  
Qiang Yan ◽  
Yan Ling Zhang ◽  
Hong Liang Hou

Porous silicon carbide was sintered at 1300 °C/30 MPa for 2 h with 4 wt.% magnesium alloy and 4 wt.% chromium carbide composite additives. The sintered ceramic presented density of around 92% of the theoretical density. No new phase was observed after sintering. Mg segregates around chromium carbide particles in sintered ceramic. The silicon carbide particles were mainly bonded by melt magnesium alloy and chromium carbide diffused in solid state. The voids existed in the sintered ceramic, but much more fracture occurred in silicon carbide particles during bending due to high bonding strength of sintering necks. Some voids existed in the ceramic, which act as crack sources during fracture.


2019 ◽  
Vol 116 (6) ◽  
pp. 631 ◽  
Author(s):  
R. Ashok kumar ◽  
G.R. Raghav ◽  
K.J. Nagarajan ◽  
Sathish Rengarajan ◽  
P. Suganthi ◽  
...  

The main objective of this work is to modify the mechanical as well as surface properties of weld nugget by the reinforcement of hybrid ceramic particles (alumina and silicon carbide). This is accomplished by combining friction stir welding (FSW) and friction stir processing (FSP) on dissimilar AA6101-T6 and AA1350 aluminium alloys. For this purpose, various levels of mixing proportions of Al2O3 & SiC particles are used with constant groove depth and width i.e. constant groove dimension. To evaluate the quality of joints, tensile, bending, micro-hardness, wear and microstructural studies are carried out. Among these, reinforcement of 100% alumina particles exhibits better mechanical and wear properties. On the other hand, reinforcement of 100% silicon carbide particles produces poor mechanical and wear properties. And also increment in percentage of reinforcement of alumina particles improves the mechanical and wear properties of weld nugget, when compared to increment in percentage of reinforcement of silicon carbide particles.


Sign in / Sign up

Export Citation Format

Share Document