scholarly journals Study on the Transport of Terrestrial Dissolved Substances in the Pearl River Estuary Using Passive Tracers

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1235
Author(s):  
Bo Hong ◽  
Guangyu Wang ◽  
Hongzhou Xu ◽  
Dongxiao Wang

Highly populated river deltas are experiencing marine environment degradation resulting from the tremendous input of terrestrial dissolved substances (TeDS). The Pearl River Delta is one of the deltas with degradation of the water quality and ecological condition. The Pearl River Estuary (PRE) was investigated to reveal the fate and transport timescales of TeDS in order to provide guidance on water resource management and pollutant transport prediction. By using passive tracers in a calibrated 3D numerical model, the TeDS transports from five different outlet groups were investigated systematically. The TeDS transport time was computed by using the concept of water age, which is a measure of the time that has elapsed since the tracer was transported from the upstream boundary to the downstream concerned area. The tracer impacted area was defined by the area with tracer concentrations > 0.2 (arbitrary unit). The domains that were impacted by the tracer coming from each outlet group were identified separately. In the wet season, the impacted area was larger than in other seasons. The most prominent variations appeared in the Jiaomen–Hengmen–Hongqili (JHH) and Modaomen (MD) outlets. The hydrodynamic conditions controlled the offshore spreading of the TeDS. Assuming the TeDS were conservative, it took approximately 10–20 days for the TeDS to be transported from the head water to the entrance of the outlet. For the TeDS coming from the head water of the Humen outlet, it took approximately 40 (80) days for the TeDS to be transported out of the mouth of the Lingding Bay during the wet (dry) season. For the case of the TeDS coming from the head water of the JHH outlets, it took approximately 20 (40) days for the TeDS to be transported out of the Lingding Bay during the wet (dry) season. For the MD, Jiti and Yamen–Hutiao outlets, it usually took approximately 10 days for the TeDS to be transported from the head water to the inner shelf. The correlation coefficient between the river flow and tracer concentrations was 0.78, and between the river flow and transport time it was −0.70 at a station in the lower Lingding Bay. At the estuary mouth, the impacts of other forcing fields got stronger.

2020 ◽  
Author(s):  
Danna Zeng ◽  
Lixia Niu ◽  
Qingshu Yang

<p>Based on the field efforts in 2016 during a dry season (30 Nov-6 Dec) in the Pearl River Estuary (PRE),south China, this study aimed to investigate the tidal changes of phytoplankton variability (in terms of chlorophyll a) and their responses to multiple environmental factors.Time series analysis,principal component analysis (PCA),Pearson correlation analysis, and Delft3D model were carried out. A significant difference was found in the tidal variations of dissolved nutrients, covering both a spring tide and neap tide . Moderate differences in salinity and suspended sediment played different roles in the nitrogen and phosphate. The negative correlations of salinity and nitrogen ecologically implied a stronger diluting-mixing effect than that of phosphate, which has a large impact on the water quality. The adsorption of phosphorus by sediment particles was stronger than that of nitrogen. Nitrogen was mainly contributed by river discharge. DIN was constrained by tide-river dynamics and their mutual increase-decline trend, and a new source was supplemented along the transport from river to sea. The weak correlation between PO<sub>4</sub> and salinity suggested a different source contribution of the terrestrial emission from coastal cities; the contribution of river discharge was less compared with nitrogen. Over site, P-limitation was detected and was more frequently resulted in eutrophication and even bloom events. Characterizing the relationships among chlorophyll a, nutrients, and hydrological factors enables us to develop effective ecosystem management strategies, and to design studies more focused on ecological health and function.</p>


2019 ◽  
Vol 29 (4) ◽  
pp. 861-875
Author(s):  
Zeyu Zeng ◽  
William W. L. Cheung ◽  
Shiyu Li ◽  
Jiatang Hu ◽  
Ying Wang

2021 ◽  
Vol 9 (2) ◽  
pp. 131
Author(s):  
Dongliang Wang ◽  
Lijun Yao ◽  
Jing Yu ◽  
Pimao Chen

The Pearl River Estuary (PRE) is one of the major fishing grounds for the squid Uroteuthis chinensis. Taking that into consideration, this study analyzes the environmental effects on the spatiotemporal variability of U. chinensis in the PRE, on the basis of the Generalized Additive Model (GAM) and Clustering Fishing Tactics (CFT), using satellite and in situ observations. Results show that 63.1% of the total variation in U. chinensis Catch Per Unit Effort (CPUE) in the PRE could be explained by looking into outside factors. The most important one was the interaction of sea surface temperature (SST) and month, with a contribution of 26.7%, followed by the interaction effect of depth and month, fishermen’s fishing tactics, sea surface salinity (SSS), chlorophyll a concentration (Chl a), and year, with contributions of 12.8%, 8.5%, 7.7%, 4.0%, and 3.1%, respectively. In summary, U. chinensis in the PRE was mainly distributed over areas with an SST of 22–29 °C, SSS of 32.5–34‰, Chl a of 0–0.3 mg × m−3, and water depth of 40–140 m. The distribution of U. chinensis in the PRE was affected by the western Guangdong coastal current, distribution of marine primary productivity, and variation of habitat conditions. Lower stock of U. chinensis in the PRE was connected with La Niña in 2008.


Harmful Algae ◽  
2012 ◽  
Vol 13 ◽  
pp. 10-19 ◽  
Author(s):  
Ping-Ping Shen ◽  
Ya-Nan Li ◽  
Yu-Zao Qi ◽  
Lv-Ping Zhang ◽  
Ye-Hui Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document