scholarly journals Granulation of Drinking Water Treatment Residues: Recent Advances and Prospects

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1400
Author(s):  
Baiming Ren ◽  
Yaqian Zhao ◽  
Bin Ji ◽  
Ting Wei ◽  
Cheng Shen

Beneficial reuse of drinking water treatment plant residues (WTRs) has been intensively studied worldwide in the last decades, but few engineering applications can be found. The majority of WTRs were directly reused in cake form (after dewatering), e.g., alum sludge cake as main substrate used in constructed wetlands (CWs), or oven dried and ground powdery form, e.g., sorbent for pollutant removal. However, WTRs reuse in such forms has several drawbacks, i.e., difficulty of recovering and easy clogging (in CWs), which result in limited WTRs engineering applications. Granulation or pelleting could widen and be a wiser WTRs reuse route and also seems to be a promising strategy to overcome the “application bottleneck” issues. In the literature, a number of trials of WTRs granulation have been reported since 2008, including sintering ceramsite, gel entrapment and newly emerged techniques. Hence, there is a need to overlook these studies and promote WTRs granulation for further development. To this end, this review firstly provides a piece of updated comprehensive information and critical analysis regarding WTRs granulation/pelleting technology. It aims to enhance WTRs granulation studies in the developing stage and thus enlarge WTRs engineering applications.

RSC Advances ◽  
2016 ◽  
Vol 6 (80) ◽  
pp. 76922-76932 ◽  
Author(s):  
Bingwei Hou ◽  
Tao Lin ◽  
Wei Chen

Recycling the filter backwash water of a drinking water treatment plant (DWTP) was considered as a feasible method to enhance the efficiencies of pollutant removal and water conservation.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


2017 ◽  
Vol 29 (12) ◽  
pp. 2665-2670
Author(s):  
Soleha Mohamat Yusuff ◽  
K.K. Ong ◽  
W.M.Z. Wan Yunus ◽  
A. Fitrianto ◽  
M. Ahmad ◽  
...  

Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Alexandre Lobo-da-Cunha ◽  
Cathrin Spröer ◽  
...  

A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22T, was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15–37 °C, at pH 7–10 and with <8 % (w/v) NaCl (optimum growth: 30 °C, pH 7–8 and 1–3 % NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22T was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162T (98.5 % 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2T (97.9 %), Bacillus infantis SMC 4352-1T (97.4 %), Bacillus firmus IAM 12464T (96.8 %) and Bacillus muralis LMG 20238T (96.8 %). DNA–DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22T from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22T ( = DSM 23494T = NRRL B-59432T = LMG 25783T).


2010 ◽  
Vol 10 (2) ◽  
pp. 121-127 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

The performance of a drinking-water treatment plant is determined by the control of the plant. To design the appropriate control system, a control-design methodology of five design steps is proposed, which takes the treatment process characteristics into account. For each design step, the necessary actions are defined. Using the methodology for the pellet-softening treatment step, a new control scheme for the pellet-softening treatment step has been designed and implemented in the full-scale plant. The implementation resulted in a chemical usage reduction of 15% and reduction in the maintenance effort for this treatment step. Corrective actions of operators are no longer necessary.


Sign in / Sign up

Export Citation Format

Share Document