scholarly journals Design Aspects, Energy Consumption Evaluation, and Offset for Drinking Water Treatment Operation

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1772
Author(s):  
Saria Bukhary ◽  
Jacimaria Batista ◽  
Sajjad Ahmad

Drinking water treatment, wastewater treatment, and water distribution are energy-intensive processes. The goal of this study was to design the unit processes of an existing drinking water treatment plant (DWTP), evaluate the associated energy consumption, and then offset it using solar photovoltaics (PVs) to reduce carbon emissions. The selected DWTP, situated in the southwestern United States, utilizes coagulation, flocculation, sedimentation, filtration, and chlorination to treat 3.94 m3 of local river water per second. Based on the energy consumption determined for each unit process (validated using the plant’s data) and the plant’s available landholding, the DWTP was sized for solar PV (as a modeling study) using the system advisor model. Total operational energy consumption was estimated to be 56.3 MWh day−1 for the DWTP including water distribution pumps, whereas energy consumption for the DWTP excluding water distribution pumps was 2661 kWh day−1. The results showed that the largest consumers of energy—after the water distribution pumps (158.1 Wh m−3)—were the processes of coagulation (1.95 Wh m−3) and flocculation (1.93 Wh m−3). A 500 kW PV system was found to be sufficient to offset the energy consumption of the water treatment only operations, for a net present value of $0.24 million. The net reduction in carbon emissions due to the PV-based design was found to be 450 and 240 metric tons CO2-eq year−1 with and without battery storage, respectively. This methodology can be applied to other existing DWTPs for design and assessment of energy consumption and use of renewables.

Water ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 28 ◽  
Author(s):  
Saria Bukhary ◽  
Jacimaria Batista ◽  
Sajjad Ahmad

One of the pressing issues currently faced by the water industry is incorporating sustainability considerations into design practice and reducing the carbon emissions of energy-intensive processes. Water treatment, an indispensable step for safeguarding public health, is an energy-intensive process. The purpose of this study was to analyze the energy consumption of an existing drinking water treatment plant (DWTP), then conduct a modeling study for using photovoltaics (PVs) to offset that energy consumption, and thus reduce emissions. The selected plant, located in southwestern United States, treats 0.425 m3 of groundwater per second by utilizing the processes of coagulation, filtration, and disinfection. Based on the energy consumption individually determined for each unit process (validated using the DWTP’s data), the DWTP was sized for PVs (as a modeling study). The results showed that the dependency of a DWTP on the traditional electric grid could be greatly reduced by the use of PVs. The largest consumption of energy was associated with the pumping operations, corresponding to 150.6 Wh m−3 for the booster pumps to covey water to the storage tanks, while the energy intensity of the water treatment units was found to be 3.1 Wh m−3. A PV system with a 1.5 MW capacity with battery storage (30 MWh) was found to have a positive net present value and a levelized cost of electricity of 3.1 cents kWh−1. A net reduction in the carbon emissions was found as 950 and 570 metric tons of CO2-eq year−1 due to the PV-based design, with and without battery storage, respectively.


2006 ◽  
Vol 53 (4-5) ◽  
pp. 493-501 ◽  
Author(s):  
K.M. van Schagen ◽  
R. Babuška ◽  
L.C. Rietveld ◽  
E.T. Baars

A drinking water treatment plant has a typical configuration of parallel lanes to provide safe drinking water 24 h a day. A new approach for optimising the production of drinking water treatment plants is proposed. This approach is applied to the softening process step and shows promising results in terms of cost reduction by optimising the water distribution over several parallel reactors. The proposed scheme relies on optimal model-based control of a single softening reactor and the use of a bypass.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Harrison H. Boying ◽  
Fang Ping ◽  
Mohamed Yateh ◽  
Mulenga Collins ◽  
Emmanuel W. Gore ◽  
...  

South Sudan is currently fronting significant difficulties to achieve the 2030 Sustainable Development Goals 6 (SDGs) framed in 2015, concentrating on water as a path to sustainable development. The country capital city Juba is one of the drinking water insecure towns in the world due to a long civil war that destroyed basic infrastructures, encourage urbanization and rural urban immigration. This paper aimed to investigate drinking water quota per capita per day in other countries, suggest a drinking water budget per capita per day to Juba, estimate optimum capacity for drinking water treatment plant to the city, and recommend a suitable drinking water distribution system. Literature review methods under meta-analysis were conducted to assess the drinking water budget per capita per day for cities in the world and to investigate advantages and disadvantages of some drinking water distribution systems. Mathematical models were used to estimate the capacity of the drinking water treatment plant required in the city. The study concluded that amount of water needed for the city is 36 x 103 m3. It should be 35 x 103 m3 for the western side and 12 x 102 m3 for the eastern side of the city. It also found that a looped drinking water distribution system is the best option for the city. The study suggested construction of a new drinking water treatment plant to secure drinking water security and improve the drinking water distribution network.


2016 ◽  
Vol 16 (4) ◽  
pp. 922-930 ◽  
Author(s):  
L. Richard ◽  
E. Mayr ◽  
M. Zunabovic ◽  
R. Allabashi ◽  
R. Perfler

The implementation and evaluation of biological nitrification as a possible treatment option for the small-scale drinking water supply of a rural Upper Austrian community was investigated. The drinking water supply of this community (average system input volume: 20 m3/d) is based on the use of deep anaerobic groundwater with a high ammonium content of geogenic origin (up to 5 mg/l) which must be treated to prevent the formation of nitrites in the drinking water supply system. This paper describes the implementation and operation of biological nitrification despite several constraints including space availability, location and financial and manpower resources. A pilot drinking water treatment plant, including biological nitrification implemented in sand filters, was designed and constructed for a maximum treatment capacity of 1.2 m3/h. Online monitoring of selected physicochemical parameters has provided continuous treatment performance data. Treatment performance of the plant was evaluated under standard operation as well as in the case of selected malfunction events.


2017 ◽  
Vol 29 (12) ◽  
pp. 2665-2670
Author(s):  
Soleha Mohamat Yusuff ◽  
K.K. Ong ◽  
W.M.Z. Wan Yunus ◽  
A. Fitrianto ◽  
M. Ahmad ◽  
...  

Author(s):  
Ivone Vaz-Moreira ◽  
Vânia Figueira ◽  
Ana R. Lopes ◽  
Alexandre Lobo-da-Cunha ◽  
Cathrin Spröer ◽  
...  

A Gram-positive, aerobic, non-motile, endospore-forming rod, designated DS22T, was isolated from a drinking-water treatment plant. Cells were catalase- and oxidase-positive. Growth occurred at 15–37 °C, at pH 7–10 and with <8 % (w/v) NaCl (optimum growth: 30 °C, pH 7–8 and 1–3 % NaCl). The major respiratory quinone was menaquinone 7, the G+C content of the genomic DNA was 36.5 mol% and the cell wall contained meso-diaminopimelic acid. On the basis of 16S rRNA gene sequence analysis, strain DS22T was a member of the genus Bacillus. Its closest phylogenetic neighbours were Bacillus horneckiae NRRL B-59162T (98.5 % 16S rRNA gene sequence similarity), Bacillus oceanisediminis H2T (97.9 %), Bacillus infantis SMC 4352-1T (97.4 %), Bacillus firmus IAM 12464T (96.8 %) and Bacillus muralis LMG 20238T (96.8 %). DNA–DNA hybridization, and biochemical and physiological characterization allowed the differentiation of strain DS22T from its closest phylogenetic neighbours. The data supports the proposal of a novel species, Bacillus purgationiresistans sp. nov.; the type strain is DS22T ( = DSM 23494T = NRRL B-59432T = LMG 25783T).


Sign in / Sign up

Export Citation Format

Share Document