scholarly journals Significant Extremal Dependence of a Daily North Atlantic Oscillation Index (NAOI) and Weighted Regionalised Rainfall in a Small Island Using the Extremogram

Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2989
Author(s):  
Luis Angel Espinosa ◽  
Maria Manuela Portela ◽  
Rui Rodrigues

Extremal dependence or independence may occur among the components of univariate or bivariate random vectors. Assessing which asymptotic regime occurs and also its extent are crucial tasks when such vectors are used as statistical models for risk assessment in the field of Climatology under climate change conditions. Motivated by the poor resolution of current global climate models in North Atlantic Small Islands, the extremal dependence between a North Atlantic Oscillation index (NAOI) and rainfall was considered at multi-year dominance of negative and positive NAOI, i.e., −NAOI and +NAOI dominance subperiods, respectively. The datasets used (from 1948–2017) were daily NAOI, and three daily weighted regionalised rainfall series computed based on factor analysis and the Voronoi polygons method from 40 rain gauges in the small island of Madeira (∼740 km2), Portugal. The extremogram technique was applied for measuring the extremal dependence within the NAOI univariate series. The cross-extremogram determined the dependence between the upper tail of the weighted regionalised rainfalls, and the upper and lower tails of daily NAOI. Throughout the 70-year period, the results suggest systematic evidence of statistical dependence over Madeira between exceptionally −NAOI records and extreme rainfalls, which is stronger in the −NAOI dominance subperiods. The extremal dependence for +NAOI records is only significant in recent years, however, with a still unclear +NAOI dominance.

Author(s):  
Edward Hanna ◽  
Thomas E. Cropper

Many variations in the weather in the European and North Atlantic regions are linked with changes in the North Atlantic Oscillation (NAO). The NAO is measured using a south-minus-north index of atmospheric surface pressure variation across the North Atlantic and is closely connected with changes in the North Atlantic atmospheric polar jet stream and wider changes in atmospheric circulation. The physical, human, and biological impacts of NAO changes extend well beyond weather and climate, with major economic, social, and environmental effects. The NAO index based on barometric pressure records now extends as far back as 1850, based on recent work. Although there are few significant overall trends in monthly or seasonal NAO (i.e., for the whole record), there are many shorter-term multidecadal variations. A prominent increase in the NAO between the 1960s and 1990s was widely noted in previous work and was thought to be related to human-induced greenhouse gas forcing. However, since then this trend has reversed, with a significant decrease in the summer NAO since the 1990s and a striking increase in variability of the winter—especially December—NAO that has resulted in four of the six highest and two of the five lowest NAO Decembers occurring during 2004–2015 in the 116-year record, with accompanying more variable year-to-year winter weather conditions over the United Kingdom. These NAO changes are related to an increasing trend in the Greenland Blocking Index (GBI; equals high pressure over Greenland) in summer and a significantly more variable GBI in December. Such NAO and related jet stream and blocking changes are not generally present in the current generation of global climate models, although recent process studies offer insights into their possible causes. Several plausible climate forcings and feedbacks, including changes in the sun’s energy output and the Arctic amplification of global warming with accompanying reductions in sea ice, may help explain the recent NAO changes. Recent research also suggests significant skill in being able to make seasonal NAO predictions and therefore long-range weather forecasts for up to several months ahead for northwest Europe. However, global climate models remain unclear on longer-term NAO predictions for the remainder of the 21st century.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2001 ◽  
Vol 33 ◽  
pp. 444-448 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman

AbstractIn order to extend diagnoses of recent sea-ice variations beyond the past few decades, a century-scale digital dataset of Arctic sea-ice coverage has been compiled. For recent decades, the compilation utilizes satellite-derived hemispheric datasets. Regional datasets based primarily on ship reports and aerial reconnaissance are the primary inputs for the earlier part of the 20th century. While the various datasets contain some discrepancies, they capture the same general variations during their period of overlap. The outstanding feature of the time series of total hemispheric ice extent is a decrease that has accelerated during the past several decades. The decrease is greatest in summer and weakest in winter, contrary to the seasonality of the greenhouse changes projected by most global climate models. The primary spatial modes of sea-ice variability diagnosed in terms of empirical orthogonal functions, also show a strong seasonality. The first winter mode is dominated by an opposition of anomalies in the western and eastern North Atlantic, corresponding to the well-documented North Atlantic Oscillation. The primary summer mode depicts an anomaly of the same sign over nearly the entire Arctic and captures the recent trend of sea-ice coverage.


2014 ◽  
Vol 43 (3-4) ◽  
pp. 1083-1102 ◽  
Author(s):  
Ana Cordeiro Pires ◽  
Rita Nolasco ◽  
Alfredo Rocha ◽  
Alexandre M. Ramos ◽  
Jesus Dubert

2020 ◽  
Author(s):  
Maria A. Zawadowicz ◽  
Kaitlyn Suski ◽  
Jiumeng Liu ◽  
Mikhail Pekour ◽  
Jerome Fast ◽  
...  

Abstract. The Aerosol and Cloud Experiment in the Eastern North Atlantic (ACE-ENA) investigated properties of aerosols and subtropical marine boundary layer (MBL) clouds. Low subtropical marine clouds can have a large effect on Earth's radiative budget, but they are poorly represented in global climate models. In order to understand their radiative effects, it is imperative to understand the composition and sources of the MBL cloud condensation nuclei (CCN). The campaign consisted of two intensive operation periods (IOP) (June–July, 2017 and January–February, 2018) during which a fully instrumented G-1 aircraft was deployed from Lajes Field on Terceira Island in the Azores, Portugal. The G-1 conducted research flights in the vicinity of the Atmospheric Radiation Measurement (ARM) Eastern North Atlantic (ENA) atmospheric observatory on Graciosa Island. An Aerodyne HR-ToF Aerosol Mass Spectrometer (AMS) and Ionicon Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) were deployed aboard the aircraft, characterizing chemistry of non-refractory aerosol and trace gases, respectively. The Eastern North Atlantic region was found to be very clean, with average non-refractory aerosol mass loading of 0.6 μg m−3 in the summer and 0.1 μg m


2021 ◽  
Vol 7 (26) ◽  
pp. eabe6102
Author(s):  
Juncal A. Cruz ◽  
Frank McDermott ◽  
María J. Turrero ◽  
R. Lawrence Edwards ◽  
Javier Martín-Chivelet

Despite the multiple impacts of mineral aerosols on global and regional climate and the primary climatic control on atmospheric dust fluxes, dust-climate feedbacks remain poorly constrained, particularly at submillennial time scales, hampering regional and global climate models. We reconstruct Saharan dust fluxes over Western Europe for the last 5000 years, by means of speleothem strontium isotope ratios (87Sr/86Sr) and karst modeling. The record reveals a long-term increase in Saharan dust flux, consistent with progressive North Africa aridification and strengthening of Northern Hemisphere latitudinal climatic gradients. On shorter, centennial to millennial scales, it shows broad variations in dust fluxes, in tune with North Atlantic ocean-atmosphere patterns and with monsoonal variability. Dust fluxes rapidly increase before (and peaks at) Late Holocene multidecadal- to century-scale cold climate events, including those around 4200, 2800, and 1500 years before present, suggesting the operation of previously unknown strong dust-climate negative feedbacks preceding these episodes.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Céline Heuzé ◽  
Marius Årthun

Oceanic heat transport from the North Atlantic to the Arctic through the Nordic Seas is a key component of the climate system that has to be modelled accurately in order to predict, for example, future Arctic sea ice changes or European climate. Here we quantify biases in the climatological state and dynamics of the transport of oceanic heat into the Nordic Seas across the Greenland-Scotland ridge in 23 state-of-the-art global climate models that participated in the Climate Model Intercomparison Project phase 5. The mean poleward heat transport, its seasonal cycle and interannual variability are inconsistently represented across these models, with a vast majority underestimating them and a few models greatly overestimating them. The main predictor for these biases is the resolution of the model via its representation of the Greenland-Scotland ridge bathymetry: the higher the resolution, the larger the heat transport through the section. The second predictor is the large-scale ocean circulation, which is also connected to the bathymetry: models with the largest heat transport import water from the European slope current into all three straits of the Greenland-Scotland ridge, whereas those with a weak transport import water from the Labrador Sea. The third predictor is the spatial pattern of their main atmospheric modes of variability (North Atlantic Oscillation, East Atlantic and Scandinavian patterns), where the models with a weak inflow have their atmospheric low-pressure centre shifted south towards the central Atlantic. We argue that the key to a better representation of the large-scale oceanic heat transport from the North Atlantic to the Arctic in global models resides not only in higher resolution, but also in a better bathymetry and representation of the complex ocean-ice-atmosphere interactions.


2018 ◽  
Vol 12 (10) ◽  
pp. 3287-3292 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


Sign in / Sign up

Export Citation Format

Share Document