scholarly journals Strong links between Saharan dust fluxes, monsoon strength, and North Atlantic climate during the last 5000 years

2021 ◽  
Vol 7 (26) ◽  
pp. eabe6102
Author(s):  
Juncal A. Cruz ◽  
Frank McDermott ◽  
María J. Turrero ◽  
R. Lawrence Edwards ◽  
Javier Martín-Chivelet

Despite the multiple impacts of mineral aerosols on global and regional climate and the primary climatic control on atmospheric dust fluxes, dust-climate feedbacks remain poorly constrained, particularly at submillennial time scales, hampering regional and global climate models. We reconstruct Saharan dust fluxes over Western Europe for the last 5000 years, by means of speleothem strontium isotope ratios (87Sr/86Sr) and karst modeling. The record reveals a long-term increase in Saharan dust flux, consistent with progressive North Africa aridification and strengthening of Northern Hemisphere latitudinal climatic gradients. On shorter, centennial to millennial scales, it shows broad variations in dust fluxes, in tune with North Atlantic ocean-atmosphere patterns and with monsoonal variability. Dust fluxes rapidly increase before (and peaks at) Late Holocene multidecadal- to century-scale cold climate events, including those around 4200, 2800, and 1500 years before present, suggesting the operation of previously unknown strong dust-climate negative feedbacks preceding these episodes.

2018 ◽  
Vol 12 (10) ◽  
pp. 3287-3292 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


2019 ◽  
Vol 54 (1-2) ◽  
pp. 273-286 ◽  
Author(s):  
Rosalind K. Haskins ◽  
Kevin I. C. Oliver ◽  
Laura C. Jackson ◽  
Richard A. Wood ◽  
Sybren S. Drijfhout

Abstract Anthropogenic climate change is projected to lead to a weakening of the Atlantic meridional overturning circulation (AMOC). One of the mechanisms contributing to this is ice melt leading to a freshening of the North Atlantic Ocean. We use two global climate models to investigate the role of temperature and salinity in the weakening of the AMOC resulting from freshwater forcing. This study finds that freshwater hosing reduces the strength of the AMOC, but in some situations it is not through reduced density from freshening, but a reduction in density from subsurface warming. When the freshwater is mixed down it directly reduces the density of the North Atlantic, weakening the strength of the AMOC. As the AMOC weakens, the mixed layer depth reduces and surface properties are less effectively mixed down. A buoyant surface cap forms, blocking atmospheric fluxes. This leads to the development of a warm anomaly beneath the surface cap, which becomes the primary driver of AMOC weakening. We found that the mean North Atlantic salinity anomaly can be used as a proxy for AMOC weakening because it describes the extent of this surface cap.


2018 ◽  
Author(s):  
Edward Hanna ◽  
Xavier Fettweis ◽  
Richard J. Hall

Abstract. Recent studies note a significant increase in high-pressure blocking over the Greenland region (Greenland Blocking Index, GBI) in summer since the 1990s. Such a general circulation change, indicated by a negative trend in the North Atlantic Oscillation (NAO) index, is generally highlighted as a major driver of recent surface melt records observed on the Greenland Ice Sheet (GrIS). Here we compare reanalysis-based GBI records with those from the Coupled Model Intercomparison Project 5 (CMIP5) suite of global climate models over 1950–2100. We find that the recent summer GBI increase lies well outside the range of modelled past reconstructions (Historical scenario) and future GBI projections (RCP4.5 and RCP8.5). The models consistently project a future decrease in GBI (linked to an increase in NAO), which highlights a likely key deficiency of current climate models if the recently-observed circulation changes continue to persist. Given well-established connections between atmospheric pressure over the Greenland region and air temperature and precipitation extremes downstream, e.g. over Northwest Europe, this brings into question the accuracy of simulated North Atlantic jet stream changes and resulting climatological anomalies over densely populated regions of northern Europe as well as of future projections of GrIS mass balance produced using global and regional climate models.


2019 ◽  
Vol 32 (19) ◽  
pp. 6467-6490 ◽  
Author(s):  
Kimmo Ruosteenoja ◽  
Timo Vihma ◽  
Ari Venäläinen

Abstract Future changes in geostrophic winds over Europe and the North Atlantic region were studied utilizing output data from 21 CMIP5 global climate models (GCMs). Changes in temporal means, extremes, and the joint distribution of speed and direction were considered. In concordance with previous research, the time mean and extreme scalar wind speeds do not change pronouncedly in response to the projected climate change; some degree of weakening occurs in the majority of the domain. Nevertheless, substantial changes in high wind speeds are identified when studying the geostrophic winds from different directions separately. In particular, in northern Europe in autumn and in parts of northwestern Europe in winter, the frequency of strong westerly winds is projected to increase by up to 50%. Concurrently, easterly winds become less common. In addition, we evaluated the potential of the GCMs to simulate changes in the near-surface true wind speeds. In ocean areas, changes in the true and geostrophic winds are mainly consistent and the emerging differences can be explained (e.g., by the retreat of Arctic sea ice). Conversely, in several GCMs the continental wind speed response proved to be predominantly determined by fairly arbitrary changes in the surface properties rather than by changes in the atmospheric circulation. Accordingly, true wind projections derived directly from the model output should be treated with caution since they do not necessarily reflect the actual atmospheric response to global warming.


2019 ◽  
Vol 41 (4) ◽  
pp. 374-387 ◽  
Author(s):  
Nguyen Thi Tuyet ◽  
Ngo Duc Thanh ◽  
Phan Van Tan

The study examined the performance of six regional climate experiments conducted under the framework of the Southeast Asia Regional Climate Downscaling/Coordinated Regional Climate Downscaling Experiment-Southeast Asia (SEACLID/CORDEX-SEA) project and their ensemble product (ENS) in simulating temperature at 2 m (T2m) and rainfall (R) in seven climatic sub-regions of Vietnam. The six experiments were named following the names of their driving Global Climate Models (GCMs), i.e., CNRM, CSIRO, ECEA, GFDL, HADG and MPI. The observation data for the period 1986–2005 from 66 stations in Vietnam were used to compare with the model outputs. Results showed that cold biases were prominent among the experiments and ENS well reproduced the seasonal cycle of temperature in the Northeast, Red River Delta, North Central and Central Highlands regions. For rainfall, all the experiments showed wet biases and CSIRO exhibited the best. A scoring system was elaborated to objectively rank the performance of the experiments and the ENS experiment was reported to be the best.


2015 ◽  
Vol 28 (15) ◽  
pp. 6249-6266 ◽  
Author(s):  
Christian Kerkhoff ◽  
Hans R. Künsch ◽  
Christoph Schär

Abstract A Bayesian hierarchical model for heterogeneous multimodel ensembles of global and regional climate models is presented. By applying the methodology herein to regional and seasonal temperature averages from the ENSEMBLES project, probabilistic projections of future climate are derived. Intermodel correlations that are particularly strong between regional climate models and their driving global climate models are explicitly accounted for. Instead of working with time slices, a data archive is investigated in a transient setting. This enables a coherent treatment of internal variability on multidecadal time scales. Results are presented for four European regions to highlight the feasibility of the approach. In particular, the methodology is able to objectively identify patterns of variability changes, in ways that previously required subjective expert knowledge. Furthermore, this study underlines that assumptions about bias changes have an effect on the projected warming. It is also shown that validating the out-of-sample predictive performance is possible on short-term prediction horizons and that the hierarchical model herein is competitive. Additionally, the findings indicate that instead of running a large suite of regional climate models all forced by the same driver, priority should be given to a rich diversity of global climate models that force a number of regional climate models in the experimental design of future multimodel ensembles.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2989
Author(s):  
Luis Angel Espinosa ◽  
Maria Manuela Portela ◽  
Rui Rodrigues

Extremal dependence or independence may occur among the components of univariate or bivariate random vectors. Assessing which asymptotic regime occurs and also its extent are crucial tasks when such vectors are used as statistical models for risk assessment in the field of Climatology under climate change conditions. Motivated by the poor resolution of current global climate models in North Atlantic Small Islands, the extremal dependence between a North Atlantic Oscillation index (NAOI) and rainfall was considered at multi-year dominance of negative and positive NAOI, i.e., −NAOI and +NAOI dominance subperiods, respectively. The datasets used (from 1948–2017) were daily NAOI, and three daily weighted regionalised rainfall series computed based on factor analysis and the Voronoi polygons method from 40 rain gauges in the small island of Madeira (∼740 km2), Portugal. The extremogram technique was applied for measuring the extremal dependence within the NAOI univariate series. The cross-extremogram determined the dependence between the upper tail of the weighted regionalised rainfalls, and the upper and lower tails of daily NAOI. Throughout the 70-year period, the results suggest systematic evidence of statistical dependence over Madeira between exceptionally −NAOI records and extreme rainfalls, which is stronger in the −NAOI dominance subperiods. The extremal dependence for +NAOI records is only significant in recent years, however, with a still unclear +NAOI dominance.


2009 ◽  
Vol 106 (21) ◽  
pp. 8441-8446 ◽  
Author(s):  
D. W. Pierce ◽  
T. P. Barnett ◽  
B. D. Santer ◽  
P. J. Gleckler

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3299
Author(s):  
Christina M. Botai ◽  
Joel O. Botai ◽  
Nosipho N. Zwane ◽  
Patrick Hayombe ◽  
Eric K. Wamiti ◽  
...  

This research study evaluated the projected future climate and anticipated impacts on water-linked sectors on the transboundary Limpopo River Basin (LRB) with a focus on South Africa. Streamflow was simulated from two CORDEX-Africa regional climate models (RCMs) forced by the 5th phase of the Coupled Model Inter-Comparison Project (CMIP5) Global Climate Models (GCMs), namely, the CanESM2m and IPSL-CM5A-MR climate models. Three climate projection time intervals were considered spanning from 2006 to 2099 and delineated as follows: current climatology (2006–2035), near future (2036–2065) and end of century future projection (2070–2099). Statistical metrics derived from the projected streamflow were used to assess the impacts of the changing climate on water-linked sectors. These metrics included streamflow trends, low and high flow quantile probabilities, the Standardized Streamflow Index (SSI) trends and the proportion (%) of dry and wet years, as well as drought monitoring indicators. Based on the Mann-Kendall (MK) trend test, the LRB is projected to experience reduced streamflow in both the near and the distant future. The basin is projected to experience frequent dry and wet conditions that can translate to drought and flash floods, respectively. In particular, a high proportion of dry and a few incidences of wet years are expected in the basin in the future. In general, the findings of this research study will inform and enhance climate change adaptation and mitigation policy decisions and implementation thereof, to sustain the livelihoods of vulnerable communities.


2001 ◽  
Vol 33 ◽  
pp. 444-448 ◽  
Author(s):  
John E. Walsh ◽  
William L. Chapman

AbstractIn order to extend diagnoses of recent sea-ice variations beyond the past few decades, a century-scale digital dataset of Arctic sea-ice coverage has been compiled. For recent decades, the compilation utilizes satellite-derived hemispheric datasets. Regional datasets based primarily on ship reports and aerial reconnaissance are the primary inputs for the earlier part of the 20th century. While the various datasets contain some discrepancies, they capture the same general variations during their period of overlap. The outstanding feature of the time series of total hemispheric ice extent is a decrease that has accelerated during the past several decades. The decrease is greatest in summer and weakest in winter, contrary to the seasonality of the greenhouse changes projected by most global climate models. The primary spatial modes of sea-ice variability diagnosed in terms of empirical orthogonal functions, also show a strong seasonality. The first winter mode is dominated by an opposition of anomalies in the western and eastern North Atlantic, corresponding to the well-documented North Atlantic Oscillation. The primary summer mode depicts an anomaly of the same sign over nearly the entire Arctic and captures the recent trend of sea-ice coverage.


Sign in / Sign up

Export Citation Format

Share Document