scholarly journals Wave-Structure Interaction Processes in Coastal Engineering

Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 831
Author(s):  
Francesco Aristodemo ◽  
Marcello Di Risio

Among one of the most challenging engineering problems, fluid-structure interaction processes are complex phenomena that have received much attention over the years [...]

Author(s):  
Ziyi Su ◽  
Kazuaki Inaba ◽  
Amit Karmakar ◽  
Apurba Das

Abstract Functionally graded materials (FGMs) are advanced class of composite materials which can be used as the thermal barrier to protect inner components from the outside high temperature environment. In FGMs, the volume fraction of each constituent can be tailored made across the thickness for desired applications. In this work, the simulation of FGMs in pipes is considered. Despite the wide application of pipes in machinery, those pipes would suffer from many safety problems, such as thermal stress, cavitation, fracture etc. Application of FGMs to the piping systems could lead to some new solutions accounting for safety measures and higher service life. However, the complex phenomena within the fluid structure interaction are hard to describe with the theoretical solution. The visualization of results from simulation will be helpful in understanding the distribution of kinds of physical quantities within the concerned model. For the simulation, FGMs are modeled as the layered structure in the standard finite element method (FEM) package based on FGM constituent law. The free vibration of the FG pipe is simulated and the accuracy of layered model is verified by numerical calculations. Further, based on the layered model, conjugate heat transfer simulations in a heat exchanger with FGMs are conducted.


Author(s):  
Longbin Tao ◽  
Hao Song

In this paper, the scaled boundary finite-element method (SBFEM) proposed for wave-structure interaction [Tao et al, 2007] is extended to solve two-dimensional (2D) steady incompressible viscous flows governed by the Navier-Stokes (N-S) equations. The present SBFEM scheme is validated against existing analytical solutions of the 2D viscous flow with a constant vorticity. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. Such superiority in significantly outperforming its counterparts in currently available CFD software ensures a great potential of direct application of the present method to many engineering problems. As a crucial step in expanding the application of the SBFEM, further extension of the SBFEM to to solve viscous flow of variable vorticity or even more complex viscous fluid-structure interactions will be a welcome development.


Author(s):  
Barbara Zanuttigh ◽  
Sara Mizar Formentin ◽  
Jentsje Wouter Van der Meer

The goal of this work is to present a synthesis of the improvements and updates developed to deliver the final version of the ANN tool adopted by the second edition of the wave overtopping manual, EurOtop, released on the internet in 2016. This tool consists of three identical but independent ANNs able to predict the main parameters representative of the wave-structure interaction processes, i.e. the mean wave overtopping discharge, the wave transmission and the wave reflection coefficients. The contribution focuses on the modifications of the ANN architecture carried out since the last ICCE conference to achieve an optimized representation of the wave overtopping, especially in case of low and extreme values of the overtopping discharge. The consistency of the ANN predictions is assessed through an artificial dataset including geometrical and climate input parameters that are varied with continuity, while the robustness of the tool is checked by applying the ANN to selected geometries excluded from the training database.


2021 ◽  
Vol 33 (10) ◽  
pp. 105121
Author(s):  
Sara Mizar Formentin ◽  
Maria Gabriella Gaeta ◽  
Roberto De Vecchis ◽  
Massimo Guerrero ◽  
Barbara Zanuttigh

Sign in / Sign up

Export Citation Format

Share Document