scholarly journals GIS-Based Spatiotemporal Mapping of Groundwater Potability and Palatability Indices in Arid and Semi-Arid Areas

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1323
Author(s):  
Tariq Judeh ◽  
Hanbing Bian ◽  
Isam Shahrour

This paper aims to assess groundwater potability and palatability in the West Bank, Palestine. It combines the adjusted weighted arithmetic water quality index method (AWAWQIM), a close-ended questionnaire, and step-wise assessment ratio analysis (SWARA) to develop groundwater potability (PoGWQI) and palatability (PaGWQI) indices. Both a geographic information system (GIS) and the kriging interpolation method (KIM) are employed to create spatiotemporal mapping of PoGWQI and PaGWQI. The research is based on data from 79 wells, which were provided by the Palestinian Water Authority (PWA). Data include fecal coliform (FC), nitrate (NO3), pH, chloride (Cl), sulfate (SO4), bicarbonate (HCO3), total dissolved solids (TDS), turbidity, and hardness. Results indicate that 2% and 5% of water samples were unpotable and unpalatable, respectively. Unpotable samples were found in areas with poor sewer networks and intensive use of agrochemicals. All groundwater samples (100%) in the eastern part of the West Bank were unpalatable because of seawater intrusion. Unconfined aquifers were more vulnerable to potability and palatability contamination. It was noticed that PoGWQI is sensitive to FC and NO3, while PaGWQI is sensitive to HCO3, TDS, and Cl. Consequently, these quality parameters should be monitored well. The proposed method is of great interest to water decision-makers in Palestine for establishing strategies to protect water resources.

2016 ◽  
Vol 16 (5) ◽  
pp. 1277-1286 ◽  
Author(s):  
Zhang Nan ◽  
Liu Bo ◽  
Xiao Changlai

Groundwater monitoring wells located in urban areas of Jilin City were sampled from 1980 to 2009 for eight groundwater quality parameters: pH, SO42−, Cl−, NO3−-N, NO2− -N, NH4+-N, F−, and total hardness (TH). The data were analysed by a universal exponential formula based on an immune evolutionary algorithm, and later mapped with the Kriging interpolation method. The primary objectives were to assess the main parameters that influenced groundwater quality and the spatio-temporal variability of groundwater contamination over several years. The results showed that NO3−, NH4+, and TH were the main parameters that influenced groundwater quality. Spatially, groundwater was polluted in all urban areas to varying degrees, and the Jiangbei district was the most heavily polluted location. Temporally, the groundwater contamination status could generally be classified into four stages and showed the following pattern during 1980–2009: heavy – light – heavy – light.


2013 ◽  
Vol 6 (2) ◽  
pp. 57-76
Author(s):  
SAAD SH. SAMMEN

In this study Water Quality Index (WQI) was applied in Hemren Lake, Diyala province, Iraq using ten water quality parameters (pH, Electrical Conductivity, Hardness, Total Dissolve Soluble, Sodium, Calcium, Magnesium, Potassium, Chloride, Phosphate) from 2008 to 2010 to evaluate the suitability of Hemren Lake ecosystem for drinking and irrigation uses. The Weighted Arithmetic Index method (WAM) and the Canadian Council of Ministers of the Environment Water Quality Index methodology (The CWQI 1.0 model) were used to calculate the water quality index (W.Q.I). The results indicated that drinking water quality of Hemren Lake is good and marginal for the study period according to (WAM) and (CCME) respectively, while the irrigation water quality is good and according to (WAM) and (CCME). It is suggested that monitoring of the lake is necessary for proper management. Application of the WQI is also suggested as a very helpful tool that enables the public and decision makers to evaluate water quality of lakes in Iraq.


Author(s):  
Oumaima Ezzaamari ◽  
Guénhaël Le Quilliec ◽  
Florian Lacroix ◽  
Stéphane Méo

ABSTRACT Various research is covering instrumented nano-indentation in the literature. However, studies on this characterization test remain limited when it comes to the local mechanical behavior of elastomeric materials. The application of nano-indentation on these materials is a difficult task given their complex mechanical and structural characteristics. We try to overcome these experimental limitations and find an effective numerical approach for local mechanical characterization of hyper-elastic materials. For such needs, we carried out a numerical study based on model reduction and shape manifold approach to investigate the parameters identification of different hyper-elastic constitutive laws by using instrumented indentation. Similarly, we studied the influence of the indenter geometry, the friction coefficient variation, and finally the indented material height effect. To this end, we constructed a reduced order model through a design of experiments by proper orthogonal decomposition combined with the kriging interpolation method.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Azza Daghara ◽  
Issam A. Al-Khatib ◽  
Maher Al-Jabari

The shortage of fresh water creates acute challenges in the West Bank of Palestine. Springs provide a main water resource in the West Bank. Investigating springs’ water quality is essential step for promoting their public use. The aim of this research is to assess the microbiological and physiochemical quality parameters of drinking water from springs. The study methodology included sampling through field work and laboratory testing for water quality parameters using standard procedures. The study area covered all locations containing licensed springs by the Palestinian Water Authority in the West Bank of Palestine. The number of collected samples was 127 covering 300 springs. The chemical, physical, and biological parameters for each sample were measured. Then, the obtained characteristics were evaluated based on national and international quality standards (PSI and WHO). The investigated parameters included temperature, pH, EC, total hardness, concentrations of nitrate, sodium ions, total chlorine, residual chlorine, turbidity, and total and faecal coliforms. Most of investigated physical and chemical parameters were within the acceptable standard limits. However, the turbidity and chloride and nitrate concentrations exceeded standard limits. The findings indicate that only a minor fraction of the samples (2%) requires chlorination treatment, while most of the springs (97% of samples) are classified as possessing no risk.


2020 ◽  
Vol 12 (24) ◽  
pp. 4105
Author(s):  
Jing Liu ◽  
Shijin Wang ◽  
Yuanqing He ◽  
Yuqiang Li ◽  
Yuzhe Wang ◽  
...  

Using ground-penetrating radar (GPR), we measured and estimated the ice thickness of the Baishui River Glacier No. 1 of Yulong Snow Mountain. According to the position of the reflected media from the GPR image, combined with the radar waveform amplitude and polarity change information, the ice thickness and the changing medium position at the bottom of this temperate glacier were identified. Water paths were found in the measured ice, including ice caves and crevasses. A debris-rich ice layer was found at the bottom of the glacier, which produces strong abrasion and ploughing action at the bedrock surface. This results in the formation of different detrital layers stagnated at the ice-bedrock interface and numerous crevasses on the bedrock surface. Based on the obtained ice thickness and differential GPS data, combined with Landsat images, the kriging interpolation method was used to obtain grid data. The average ice thickness was 52.48 m and between 4740 and 4890 m above sea level, with a maximum depth of 92.83 m. The bedrock topography map of this area was drawn using digital elevation model from the Shuttle Radar Topography Mission. The central part of the glacier was characterized by small ice basins with distributed ice steps and ice ridges at the upper and lower parts.


2013 ◽  
Vol 427-429 ◽  
pp. 146-149
Author(s):  
Cheng Fan

A new element-free formulation of Kriging interpolation procedure based on finite covers technique and Kriging interpolation method which integrates the flexibilities of the manifold method in dealing with discontinuity and the element-free features of the moving Kriging interpolation. Two cover systems are employed in this method. Mathematical cover of the solution domain under consideration are used to construct shape function and physical cover is used to reproduce the geometry of the solution domain. The mathematical covers can take any types of shape and is much easily formed compared with those in the conventional MM. The presented method can overcome some difficulties in conventional element-free Galerkin methods in treating discontinuous crack problems. The fundamental theory of this procedure is illustrated and numerical analyses of examples show that the proposed procedure is an effective and simple method with higher computational accuracy.


Sign in / Sign up

Export Citation Format

Share Document