solution domain
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 1)

Author(s):  
Stéphane Caubergh ◽  
Nami Matsubara ◽  
Françoise Damay ◽  
François Fauth ◽  
Dmitry D. Khalyavin ◽  
...  

Author(s):  
Shylaja G, Et. al.

This paper demonstrates finite element procedure for two-dimensional axisymmetric domains. For many engineering applications like structural engineering, aerospace engineering, geo-mechanics etc., the solution domain and boundary conditions are axisymmetric. Henceforth, we can illuminate just the axisymmetric part of the solution domain that gives the data of the entire domain. This paper demonstrates the effectiveness of using MATLAB programming demonstrated by Persson et.al (2004) as the initial mesh for discretization of axisymmetric domains for higher order meshing. Further, solving some class of partial differential equations using finite element method with nodal relation given by subparametric transformations Rathod et.al (2008). In this paper a cubic order curved triangular meshing for some of the domains like ellipse and circle are demonstrated. These in turn finds its applications in the fields like stress analysis in mechanical engineering, torsion twist (shear strength) analysis in civil engineering, evaluation of stress intensity factor for quarter elliptical crack in pressure vessels in equipment industry etc,. The output data from the meshing scheme like meshing of the domain, nodal position, element connectivity and boundary edges are been used in the finite element procedures. The efficiency of the method is achieved by p-refinement scheme i.e., fixing the number of elements and increasing the polynomial order.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Arya Mohit ◽  
Ujlayan Amit

AbstractAn iterative method (AIM) is one of the numerical method, which is easy to apply and very time convenient for solving nonlinear differential equations. However, if we want to work in a large interval, sometimes it may be difficult to apply AIM. Therefore, a multistage AIM named Multistage Modified Iterative Method (MMIM) is introduced in this article to work in a large computational interval. The applicability of MMIM for increasing the solution domain of the given problems is construed in this article. Some problems are solved numerically using MMIM, which provides a better result in the extended interval as compared to AIM. Comparison tables and some graphs are included to demonstrate the results.


2020 ◽  
pp. 1-39
Author(s):  
Xiong Zhao ◽  
Chennan Yu ◽  
Jianneng Chen ◽  
Xincheng Sun ◽  
Jun Ye ◽  
...  

Abstract Existing research on synthesis methods for single degree-of-freedom (DOF) six-bar linkages mainly include four or five exact poses. However, an ideal trajectory cannot be synthesized using only five exact poses, thus, it is necessary to introduce additional poses to constrain the trajectory. If more exact poses are introduced, then the linkage may have no solution. Therefore, the constraints of the approximate pose are considered to make the trajectory conform to the desired trajectory. This paper successfully introduces mixed poses into a six-bar linkage, based on Z (Z<5) exact poses and K approximate poses of a given error range, and a new synthesis method for single DOF six-bar linkages is proposed. The solution domain of the linkages synthesized by this method is wide and can be adjusted by controlling the error of the approximate poses, which reduces the difficulty of selecting the solution, ensures theoretical feasibility, and enables the trajectory of the final linkage to more closely match the ideal trajectory. Finally, for the coordinated training of multiple joints in human limbs, a rehabilitation device is designed based on the above six-bar linkage, and a prototype is developed and tested. The test results reveal the accuracy of the proposed method and the effectiveness of rehabilitation training.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1631
Author(s):  
Shahzada Zaman Shuja ◽  
Bekir Sami Yilbas ◽  
Hussain Al-Qahtani

In this study, heat and flow analysis of the cooling system incorporating fins with hydrophilic and hydrophobic wetting surfaces has been considered in relation to electronic cooling applications. Temperature and velocity fields in the solution domain are simulated for various fin numbers and sizes. A temperature parameter is introduced to assess the thermal performance of the system. Fin count is introduced to formulate the number of fins in the solution domain. The Nusselt number and pressure drop between the inlet and exit ports due to different fin configurations of the cooling system for various fin counts are presented. It is found that the temperature parameter attains high values for large sizes and small fin counts, which is more pronounced for low Reynolds numbers. Increasing number of fins results in almost uniform flow distribution among the fin, which is more pronounced for the hydrophobic fin configuration. The Nusselt number attains larger values for the hydrophilic fin configuration than that corresponding to the hydrophobic fin, and it attains a peak value for certain arrangement of fin count, which differs with the Reynolds number. The pressure drop between the inlet and exit ports reduces for hydrophobic fin; hence the slip velocity introduced for hydrophobic fin improves the pressure drop by 6% to 16% depending on the fin counts in the cooling system.


Author(s):  
Timo Greifenberg ◽  
Steffen Hillemacher ◽  
Katrin Hölldobler

AbstractThe usage of models within model-driven software development aims at facilitating complexity management of the system under development and closing the gap between the problem and the solution domain. Utilizing model-driven software development (MDD) tools for agile development can also increase the complexity within a project. The huge number of different artifacts and relations, their different kinds, and the high degree of automation hinder the understanding, maintenance, and evolution within MDD projects. A systematic approach to understand and manage MDD projects with a focus on its artifacts and corresponding relations is necessary to handle the complexity. The artifact-based analysis presented in this paper is such an approach. This paper gives an overview of different contributions of the artifact-based analysis but focuses on a specific kind of analysis: architecture consistency checking of model-driven development projects. By applying this kind of analyses, differences between the desired architecture and the actual architecture of the project at a specific point in time can be revealed.


2019 ◽  
Vol 9 (19) ◽  
pp. 4179
Author(s):  
Perrotta ◽  
Maffucci ◽  
Ventre ◽  
Tamburrino

This paper proposes an efficient technique to solve the electromagnetic scattering problem, in the near zone of scatterers illuminated by external fields. The technique is based on a differential formulation of the Helmholtz equation discretized in terms of a finite element method (FEM). In order to numerically solve the problem, it is necessary to truncate the unbounded solution domain to obtain a bounded computational domain. This is usually done by defining fictitious boundaries where absorbing conditions are imposed, for example by applying the perfect matching layer (PML) approach. In this paper, these boundary conditions are expressed in an analytical form by using the Dirichlet-to-Neumann (DtN) operator. Compared to classical solutions such as PML, the proposed approach based on the DtN: (i) avoids the errors related to approximated boundary conditions; (ii) allows placing the boundary in close proximity to the scatterers, thus, reducing the solution domain to be meshed and the related computational cost; (iii) allows dealing with objects of arbitrary shapes and materials, since the shape of the boundary independent from those of the scatterers. Case-studies on problems related to the scattering from cable bundles demonstrate the accuracy and the computational advantage of the proposed technique, compared to existing ones.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 371 ◽  
Author(s):  
Vladimir Castanedo ◽  
Heber Saucedo ◽  
Carlos Fuentes

Water infiltration is simulated by obtaining the time infiltrated depth evolution and humidity profiles with the numerical solution of the two-dimensional Richards’ equation. The contact time hypothesis is accepted in this study and used to apply a unique form on time of the water depth evolution in the solution domain (furrow), as boundary condition. The specific form of such evolution in time was obtained from results reported in the literature based on the internal numerical full coupling of the Saint-Venant and Richards’ equations in border irrigation. Moreover, the equivalent hydraulic area between the border and the furrow was achieved by scaling the values of water depth. The analysis was made for three contrasting soil textures, and the comparison was done by computing the root mean square error (RMSE) indicator. The comparison was performed from the selection of five finite element meshes with different densities to discretize the solution domain of the two-dimensional Richards’ equation, combined with several time steps. Finally, a comparison was made between infiltrated depth evolution calculated with a constant water depth in the furrow to the one proposed in this work, finding important differences between both approaches. To expand the scope of this study and for a fuller exploration of the subject, the results were compared with results obtained by applying the HYDRUS-2D software. The results confirm that it is important to consider an internal full coupling of the Saint-Venant and Richards´ equations to improve furrow irrigation simulations.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881436
Author(s):  
Xiong Zhao ◽  
Mengyan Chu ◽  
Xingxiao Ma ◽  
Li Dai ◽  
Bingliang Ye ◽  
...  

Among all kinds of transplanting mechanisms which are the important parts of transplanters, the planetary gear train transplanting mechanism is widely used for its excellent transmission performance, but it is difficult to design the gear pitch curves and structural parameters according to the trajectory and pose requirements of transplanting. The current design method of the non-circular planetary gear train transplanting mechanism cannot ensure the precise position and posture in the crucial points of transplanting trajectory, nor take both the anticipated trajectory and the smoothness of the gear pitch curves into account, it will only get one solution which is available for mechanism design. In order to solve those problems, the non-circular planetary gear train transplanting mechanism is analyzed as a combination of the bar-group and gear train system. According to the transplanting requirements, three points with precise position and posture which called pose points in the trajectory are given to obtain the solution domain of the parameters of bar-group, and then trajectory shape control points are inlet to design the desired shape of the transplanting trajectory and obtain the transmission ratio curve which can be used to get the gear pitch curve. The most suitable parameters of bar-group in solution domain are selected based on the smoothness of the gear pitch curves. This article establishes three-dimensional model of the mechanism and utilizes the ADAMS to carry out a motion simulation; all simulation results are consistent with theoretical design results, which confirm that the design method based on prescribed pose points and trajectory control points is adequate for the transplanting mechanism. With the proposed method, the selectivity of the mechanism’s parameters solution is increased, and transmission performance benefits from the integrated design of trajectory control and the smoothness of the pitch curves.


Sign in / Sign up

Export Citation Format

Share Document