scholarly journals Evapotranspiration and Its Partitioning in Alpine Meadow of Three-River Source Region on the Qinghai-Tibetan Plateau

Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2061
Author(s):  
Lifeng Zhang ◽  
Zhiguang Chen ◽  
Xiang Zhang ◽  
Liang Zhao ◽  
Qi Li ◽  
...  

The Qinghai-Tibetan Plateau (QTP) is generally considered to be the water source region for its surrounding lowlands. However, there have only been a few studies that have focused on quantifying alpine meadow evapotranspiration (ET) and its partitioning, which are important components of water balance. This paper used the Shuttleworth–Wallace (S–W) model to quantify soil evaporation (E) and plant transpiration (T) in a degraded alpine meadow (34°24′ N, 100°24′ E, 3963 m a.s.l) located at the QTP from September 2006 to December 2008. The results showed that the annual ET estimated by the S–W model (ETSW) was 511.5 mm (2007) and 499.8 mm (2008), while E estimated by the model (ESW) was 306.0 mm and 281.7 mm for 2007 and 2008, respectively, which was 49% and 29% higher than plant transpiration (TSW). Model analysis showed that ET, E, and T were mainly dominated by net radiation (Rn), while leaf area index (LAI) and soil water content at a 5 cm depth (SWC5cm) were the most important factors influencing ET partitioning. The study results suggest that meadow degradation may increase water loss through increasing E, and reduce the water conservation capability of the alpine meadow ecosystem.

2013 ◽  
Vol 33 (8) ◽  
pp. 2388-2399 ◽  
Author(s):  
徐翠 XU Cui ◽  
张林波 ZHANG Linbo ◽  
杜加强 DU Jiaqiang ◽  
郭杨 GUO Yang ◽  
吴志丰 WU Zhifeng ◽  
...  

2020 ◽  
Vol 42 (3) ◽  
pp. 171
Author(s):  
Huilong Lin ◽  
Feng Zhang

Understanding the process and mechanisms of alpine meadow degradation is crucial for restoration and management in the Three-River Headwaters region, Qinghai-Tibetan Plateau, China. However, little is known about this complex and controversial problem because identification and quantification of the underlying causes is difficult. This research aimed to build a spatiotemporal dynamical model for alpine meadow degradation, capturing the natural process of erosion at the interface of barren patches and undamaged meadow. The model clarified the role of barren patches and meadow connectivity in degradation, and identified the ecological mechanisms and processes accounting for the spatial and temporal pattern of degradation. A fragmentation and percolation threshold exists in the process of meadow degradation, independent of spatial scale. An impulsive differential equation was used to investigate the consequence of periodic restoration of degraded meadow. Both the level of meadow degradation and the restoration period play crucial roles in determining whether the meadow can be successfully restored. This research has demonstrated theoretically that the effectiveness of meadow restoration by periodic effort depends on the degree of degradation.


Ecohydrology ◽  
2017 ◽  
Vol 11 (2) ◽  
pp. e1925 ◽  
Author(s):  
Fawei Zhang ◽  
Hongqin Li ◽  
Wenying Wang ◽  
Yikang Li ◽  
Li Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document