scholarly journals Optimization of Magnetic Nanoparticles Draw Solution for High Water Flux in Forward Osmosis

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3653
Author(s):  
MhdAmmar Hafiz ◽  
Mohammed Talhami ◽  
Muneer M. Ba-Abbad ◽  
Alaa H. Hawari

In this study, bare iron oxide nanoparticles were synthesized using a co-precipitation method and used as a draw solute in forward osmosis. The synthesis conditions of the nanoparticles were optimized using the Box-Behnken method to increase the water flux of the forward osmosis process. The studied parameters were volume of ammonia solution, reaction temperature, and reaction time. The optimum reaction conditions were obtained at reaction temperature of 30 °C, reaction time of 2.73 h and 25.3 mL of ammonia solution. The water flux from the prediction model was found to be 2.06 LMH which is close to the experimental value of 1.98 LMH. The prediction model had high correlation factors (R2 = 98.82%) and (R2adj = 96.69%). This study is expected to be the base for future studies aiming at developing magnetic nanoparticles draw solution using co-precipitation method.

2013 ◽  
Vol 455 ◽  
pp. 43-47 ◽  
Author(s):  
Xiao Ming Hou ◽  
Ben Xian Shen ◽  
Ji Gang Zhao

The oxides adsorbent of NiO-ZnO/-Al2O3-SiO2 was prepared by co-precipitation method. SEM, XRD and BET studies were performed to understand the structural properties of the adsorbent. And the adsorbent can be used for the desulfurization of thiophene in n-hexane as model gasoline. Removal rate of thiophene increased with increasing reaction time. Removal rate of thiophene in equilibrium decreases with increasing the initial concentration of thiophene. The extent of adsorption in adsorbent increased with increasing the initial concentration of thiophene. The removal rate of thiophene increases with increasing reaction temperature, it showed that the desulfurization is a chemical process not a physical process.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yasamin Bide ◽  
Marzieh Arab Fashapoyeh ◽  
Soheila Shokrollahzadeh

AbstractForward osmosis (FO) process has been extensively considered as a potential technology that could minimize the problems of traditional water desalination processes. Finding an appropriate osmotic agent is an important concern in the FO process. For the first time, a nonionic surfactant-based draw solution was introduced using self-assemblies of Tween 80 and choline chloride. The addition of choline chloride to Tween 80 led to micelles formation with an average diameter of 11.03 nm. The 1H NMR spectra exhibited that all groups of Tween 80 were interacted with choline chloride by hydrogen bond and Van der Waals’ force. The influence of adding choline chloride to Tween 80 and the micellization on its osmotic activity was investigated. Despite the less activity of single components, the average water flux of 14.29 L m‒2 h‒1 was obtained using 0.15 M of Tween 80-choline chloride self-assembly as draw solution in the FO process with DI water feed solution. Moreover, various concentrations of NaCl aqueous solutions were examined as feed solution. This report proposed a possible preparation of nonionic surfactant-based draw solutions using choline chloride additive with enhanced osmotic activities that can establish an innovative field of study in water desalination by the FO process.


2015 ◽  
Vol 15 (10) ◽  
pp. 8279-8284 ◽  
Author(s):  
Hee-Man Yang ◽  
Hye Min Choi ◽  
Sung-Chan Jang ◽  
Myeong Jin Han ◽  
Bum-Kyoung Seo ◽  
...  

Hyperbranched polyglycerol-coated magnetic nanoparticles (SHPG-MNPs) were functionalized with succinate groups to form a draw solute for use in a forward osmosis (FO). After the one-step synthesis of hyperbranched polyglycerol-coated magnetic nanoparticles (HPG-MNPs), the polyglycerol groups on the surfaces of the HPG-MNPs were functionalized with succinic anhydride moieties. The resulting SHPG-MNPs showed no change of size and magnetic property compared with HPGMNPs and displayed excellent dispersibility in water up to the concentration of 400 g/L. SHPG-MNPs solution showed higher osmotic pressure than that of HPG-MNPs solution due to the presence of surface carboxyl groups in SHPG-MNPs and could draw water from a feed solution across an FO membrane without any reverse draw solute leakage during FO process. Moreover, the water flux remained nearly constant over several SHPG-MNP darw solute regeneration cycles applied to the ultrafiltration (UF) process. The SHPG-MNPs demonstrate strong potential for use as a draw solute in FO processes.


2014 ◽  
Vol 70 (6) ◽  
pp. 1004-1010 ◽  
Author(s):  
Th. I. Shalaby ◽  
N. M. Fikrt ◽  
M. M. Mohamed ◽  
M. F. El Kady

This study investigated the applicability of magnetite Fe3O4 nanoparticles coated with chitosan (CMNs) for the removal of some toxic heavy metals from simulated wastewater. Magnetic nanomaterials were synthesized using the co-precipitation method and characterized by transmission electron microscope, scanning electron microscope, X-ray diffraction, and Fourier transformer infrared spectroscopy. The magnetic properties of the prepared magnetic nanoparticles were determined by a vibrating-sample magnetometer. Batch experiments were carried out to determine the adsorption kinetics of Cr(VI) and Cd(II) by magnetic nanoparticles. It is noteworthy that CMNs show a highly efficient adsorption capacity for low concentration Cr(VI) and Cd(II) ions solution, which can reach 98% within 10 min.


2007 ◽  
Vol 14 (06) ◽  
pp. 1135-1141 ◽  
Author(s):  
JIE-GUANG SONG ◽  
LIAN-MENG ZHANG ◽  
JUN-GUO LI ◽  
JIAN-RONG SONG

Although Zirconium diboride ( ZrB 2) is a desirable combination with some good properties, it is easily oxidized in the high-temperature air to impact high-temperature properties, which dwindles the applied range. In order to decrease oxidization and improve the high-temperature properties of ZrB 2, the surface of ZrB 2 is coated with Al ( OH )3– Y ( OH )3 to synthesize Al ( OH )3– Y ( OH )3/ ZrB 2 composite particles. In this paper, the conditions of synthesizing Al ( OH )3– Y ( OH )3/ ZrB 2 composite particles by the co-precipitation method are investigated. Al ( OH )3– Y ( OH )3/ ZrB 2 composite particles are synthesized under different conditions, but the conditions of synthesizing Al ( OH )3– Y ( OH )3/ ZrB 2 composite particles with the better coating quality require pH = 9, the appropriate concentration ( Al 3+ = 0.017 mol/L , Y 3+ = 0.01 mol/L ) of composite solution, reaction time of 60 min, titration speed of 0.05 ml/s, using the dispersant in the ZrB 2 suspension and the ultrasonic dispersion, respectively.


2019 ◽  
Vol 154 ◽  
pp. 21-29
Author(s):  
Mokhtar Guizani ◽  
Megumi Saito ◽  
Ryusei Ito ◽  
Naoyuki Funamizu

2015 ◽  
Vol 713-715 ◽  
pp. 2916-2919
Author(s):  
Hang Zheng ◽  
Hui Ping Shao ◽  
Zi Fen Zhao

In this paper, Fe3O4magnetic nanoparticles were synthesized by chemical co-precipitation method and their surface was modified by sodium oleate. The γ-Fe2O3magnetic nanoparticles were achieved by thermal oxidizing of Fe3O4. The γ-Fe2O3magnetic fluid was prepared by using silicone oil as carrier liquid and oleic acid as surface modification agent, and the saturation magnetization of prepared γ-Fe2O3magnetic fluid hits 14.25emu/g.


RSC Advances ◽  
2016 ◽  
Vol 6 (7) ◽  
pp. 5936-5943 ◽  
Author(s):  
Radosław Mrówczyński ◽  
Justyna Jurga-Stopa ◽  
Roksana Markiewicz ◽  
Emerson L. Coy ◽  
Stefan Jurga ◽  
...  

Magnetic nanoparticles coated with bioinspired polydopamine were obtained via a co-precipitation method and oxidative polymerization of dopamine. Obtained particle were used for carrying doxorubicin to HeLa cells.


Sign in / Sign up

Export Citation Format

Share Document