scholarly journals Trend and Attribution Analysis of Runoff Changes in the Weihe River Basin in the Last 50 Years

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 47
Author(s):  
Junjie Xu ◽  
Xichao Gao ◽  
Zhiyong Yang ◽  
Tianyin Xu

In recent years, the Weihe River basin has experienced dramatic changes and a sharp decrease in runoff, which has constrained the sustainable development of the local society, economy, and ecology. Quantitative attribution analysis of runoff changes in the Weihe River basin can help to illustrate reasons for dramatic runoff changes and to understand its complex hydrological response. In this paper, the trends of hydrological elements in the Weihe River basin from 1970 to 2019 were systematically analyzed using the M–K analysis method, and the effects of meteorological elements and underlying surface changes on runoff were quantitatively analyzed using the Budyko theoretical framework. The results show that potential evapotranspiration and precipitation in the Weihe River basin have no significant change in 1970–2019; runoff depth has an abrupt change around 1990 and then decrease significantly. The study period is divided into the base period (1970–1989), PΙ (1990–2009), and PII (2010–2019). Compared with the base period, the elasticity coefficients (absolute values) of each element show an increasing trend in PΙ and PII. The sensitivity of runoff to these coefficients is increasing. The sensitivity of the precipitation is the highest (2.72~3.17), followed by that of the underlying surface parameter (−2.01~−2.35); the sensitivity of the potential evapotranspiration is the weakest (−1.72~−2.17). In the PΙ period, the runoff depth decreased significantly due to the combination effects of precipitation and underlying surface with the values of 6.18 mm and 13.92 mm, respectively. In the PII period, rainfall turned to an increasing trend, contributing to the increase in runoff by 11.80 mm; the further increase in underlying surface parameters was the main reason for the decrease in runoff by 22.19 mm. The significant increase in runoff by 8.54 mm because of the increased rainfall, compared with the PΙ periods. Overall, the increasing underlying surface parameter makes the largest contribution to the runoff changes while the precipitation change is also an important factor.

2016 ◽  
Vol 48 (1) ◽  
pp. 295-310 ◽  
Author(s):  
Aijun Guo ◽  
Jianxia Chang ◽  
Dengfeng Liu ◽  
Yimin Wang ◽  
Qiang Huang ◽  
...  

The main goal of this study is to introduce the Archimedean copulas, which overcome the low accuracy and subjective nature of the traditional double mass curve method, to investigate the precipitation–runoff relationship (PRR) and detect change points in the Weihe River Basin (WRB). With the construction of a joint distribution between precipitation and runoff by the Archimedean copulas, a statistical variable considering the distribution parameter was estimated to judge the change point of the PRR. The results show that: (1) annual precipitation and runoff present decreasing trends that are significant and insignificant, respectively, at the 95% significance level, while annual potential evapotranspiration (PET) increases slightly; (2) change points of the PRR occurred in 1971 and 1994; (3) the annual runoff changed more dramatically than precipitation during the periods from 1972 to 1994 and 1995 to 2010 compared with 1960–1971, which indicates that in addition to precipitation, there are some other non-precipitation factors that are responsible for the change in the PRR; and (4) the contributions to runoff from human activities declined from 1972 to 1994 (84.15%) and 1995 to 2010 (57.16%). These results suggest that human activities (e.g., irrigation, reservoirs, water-and-soil conservation) were the primary driving forces leading to changes in the PRR in the WRB.


资源科学 ◽  
2020 ◽  
Vol 42 (5) ◽  
pp. 907-919
Author(s):  
Mengyao GUO ◽  
Dunxian SHE ◽  
Liping ZHANG ◽  
Rouxin TANG ◽  
Pengyan ZHAO ◽  
...  

GCdataPR ◽  
2020 ◽  
Author(s):  
Fengli ZHA ◽  
Chuang LIU ◽  
Ruixiang SHI

GCdataPR ◽  
2020 ◽  
Author(s):  
Yuefei HUANG ◽  
Tiejian LI ◽  
Enze LV ◽  
Jiaye LI ◽  
Rui BAI ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 457
Author(s):  
Qidong Lin ◽  
Jinxi Song ◽  
Carlo Gualtieri ◽  
Dandong Cheng ◽  
Ping Su ◽  
...  

The effect of hyporheic exchange on macroinvertebrates is a significant topic in ecohydraulics. A field study was conducted during May and June 2017 to investigate the impacts of magnitude and patterns of hyporheic exchange on the sediment macroinvertebrate community in the Weihe River basin. The results demonstrate that upwelling flows cause resuspension of riverbed sediment, increasing the proportion of swimmer groups (such as Baetidae) in the macroinvertebrate community. However, large resuspension of river bed sediment results in a reduced abundance of macroinvertebrates. By controlling the transport processes of dissolved oxygen (DO), dissolved organic carbon (DOC), nutrients, temperature, and different patterns of hyporheic exchange strongly influence the structure of macroinvertebrate communities. Downwelling is more likely to produce rich invertebrate communities than upwelling. The magnitude for the hyporheic flux of 150–200 mm/d was optimal for the macroinvertebrate community in the Weihe River Basin. Above or below this rate results in a decline in community abundance and diversity. We suggest that research is conducted to better understand the effects of hyporheic exchange across bedforms on macroinvertebrate communities. The study supports any activities to preserve the ecological functions and health of rivers dominated by fine-grained sediments.


Author(s):  
Xueli Wang ◽  
Chenyang Li ◽  
Xiaoyu Yuan ◽  
Shengke Yang

Tetrabromobisphenol A (TBBPA) is a brominated flame retardant, which is widely present in the various environmental and biological media. The knowledge on the contamination of TBBPA in Weihe River Basin is still limited. In order to know the pollution level and distribution of tetrabromobisphenol A (TBBPA) in the Weihe River Basin, a total of 34 sediment samples and 36 water samples were collected from the main stream and tributaries of the WeiHe River Basin, and the concentration of TBBPA in the samples was analyzed by high-performance liquid chromatography–electrospray ionization–mass spectrometry (HPLC-ESI-MS). The detection frequency of TBBPA in sediments and water samples was 61.8% and 27.8%, respectively; the TBBPA concentrations in sediments and water samples were in the range of not detected (N.D.)–3.889 ng/g (mean value of 0.283 ng/g) and N.D—12.279 ng/L (mean value of 0.937 ng/L), respectively. Compared with other areas in China, the residues of TBBPA in the Weihe River Basin were at a relatively low level. The spatial distributions of TBBPA in surface sediments and water indicated that the local point-input was their major source. This is related to the proximity of some sampling sites to industrial areas and domestic sewage discharge areas. The insignificant correlation between TBBPA and total organic carbon (TOC) indicated that TBBPA in sediments is not only influenced by TOC but also affected by atmosphere and land input, wet deposition, and long-distance transmission. The potential risks posed by TBBPA in water and sediment were characterized using the risk quotient (RQ) method. The calculated RQ for TBBPA was less than 0.01, showing that the ecological risk due to TBBPA was quite low for aquatic organisms.


Sign in / Sign up

Export Citation Format

Share Document