scholarly journals Application of a technique for scenario prediction of climate change impact on the water balance components of northern river basins

2014 ◽  
Vol 62 (3) ◽  
pp. 197-208 ◽  
Author(s):  
Yeugeniy M. Gusev ◽  
Olga N. Nasonova

Abstract The scenario forecasting technique for assessing changes of water balance components of the northern river basins due to possible climate change was developed. Three IPCC global emission scenarios corresponding to different possible scenarios for economic, technological, political and demographic development of the human civilization in the 21st century were chosen for generating climate change projections by an ensemble of 16 General Circulation Models with a high spatial resolution. The projections representing increments of monthly values of meteorological characteristics were used for creating 3-hour meteorological time series up to 2063 for the Northern Dvina River basin, which belongs to the pan-Arctic basin and locates at the north of the European part of Russia. The obtained time series were applied as forcing data to drive the land surface model SWAP to simulate possible changes in the water balance components due to different scenarios of climate change for the Northern Dvina River basin

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Udit Bhatia ◽  
Amar Deep Tiwari

Abstract Climate change is likely to pose enormous challenges for agriculture, water resources, infrastructure, and livelihood of millions of people living in South Asia. Here, we develop daily bias-corrected data of precipitation, maximum and minimum temperatures at 0.25° spatial resolution for South Asia (India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka) and 18 river basins located in the Indian sub-continent. The bias-corrected dataset is developed using Empirical Quantile Mapping (EQM) for the historic (1951–2014) and projected (2015–2100) climate for the four scenarios (SSP126, SSP245, SSP370, SSP585) using output from 13 General Circulation Models (GCMs) from Coupled Model Intercomparison Project-6 (CMIP6). The bias-corrected dataset was evaluated against the observations for both mean and extremes of precipitation, maximum and minimum temperatures. Bias corrected projections from 13 CMIP6-GCMs project a warmer (3–5°C) and wetter (13–30%) climate in South Asia in the 21st century. The bias-corrected projections from CMIP6-GCMs can be used for climate change impact assessment in South Asia and hydrologic impact assessment in the sub-continental river basins.


2017 ◽  
Vol 79 (5) ◽  
Author(s):  
Norhan Abd Rahman ◽  
Zulkifli Yusop ◽  
Zekai Şen ◽  
Saud Taher ◽  
Ibrahim Lawal Kane

Rainfall record plays a significant role in assessment of climate change, water resource planning and management. In arid region, studies on rainfall are rather scarce due to intricacy and constraint of the available data. Most available studies use more advanced approaches such as A2 scenario, General Circulation Models (GCM) and the like, to study the temporal dynamics and make projection on future rainfall. However, those models take no account of the data patterns and its predictability. Therefore, this study uses time series analysis methodologies such as Mann- Kendall trend test, de-trended fluctuation analysis and state space time series approaches to study the dynamics of rainfall records of four stations in and around Wadi Al-Aqiq, Kingdom of Saudi Arabia (KSA). According to Mann-Kendall trend test there are decreasing trend in three out of the four stations. The de-trended fluctuation analysis revealed two distinct scaling properties that spells the predictability of the records and confirmed by state space methods. 


Water ◽  
2016 ◽  
Vol 8 (10) ◽  
pp. 472 ◽  
Author(s):  
Zhenliang Yin ◽  
Qi Feng ◽  
Songbing Zou ◽  
Linshan Yang

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2360 ◽  
Author(s):  
Pablo Blanco-Gómez ◽  
Patricia Jimeno-Sáez ◽  
Javier Senent-Aparicio ◽  
Julio Pérez-Sánchez

This study assessed how changes in terms of temperature and precipitation might translate into changes in water availability and droughts in an area in a developing country with environmental interest. The hydrological model Soil and Water Assessment Tool (SWAT) was applied to analyze the impacts of climate change on water resources of the Guajoyo River Basin in El Salvador. El Salvador is in one of the most vulnerable regions in Latin America to the effects of climate change. The predicted future climate change by two climate change scenarios (RCP 4.5 and RCP 8.5) and five general circulation models (GCMs) were considered. A statistical analysis was performed to identify which GCM was better in terms of goodness of fit to variation in means and standard deviations of the historical series. A significant decreasing trend in precipitation and a significant increase in annual average temperatures were projected by the middle and the end of the twenty–first century. The results indicated a decreasing trend of the amount of water available and more severe droughts for future climate scenarios with respect to the base period (1975–2004). These findings will provide local water management authorities useful information in the face of climate change to help decision making.


2021 ◽  
Author(s):  
Debajit Das ◽  
Tilottama Chakraborty ◽  
Mrinmoy Majumder ◽  
Tarun Kanti Bandyopadhyay

Abstract As climate change is linked with changes in precipitation, evapotranspiration and changes in other climatological parameters, these changes will be affected runoff of a river basin. Gomati River basin is the largest river basin among all the river basin of Tripura. Due to the increase in settlement in the Gomati river basin and climate change may threaten natural flow patterns that endure its diversity. This study assesses the impact of climate change on total flow of a catchment in North East India (Gomati River catchment). For this assessment, the Group Method of Data Handling Modeling System (GMDH) model was used to simulate the rainfall-runoff relationship of the catchment, with respect to the observed data during the period of 2008–2009. The statistically downscaled outputs of HadGEM2-ES (Hadley Centre Global Environment Model version 2), general circulation models (GCMs) scenario was used to assess the impacts of climate change on the Gomati River Basin. Future projections were developed for the 2030s, 2040s and 2050s projections, respectively. The results from the present study can contribute to the development of adaptive strategies and future policies for the sustainable management of water resources in North East, Tripura.


2015 ◽  
Vol 12 (2) ◽  
pp. 2201-2242 ◽  
Author(s):  
I. Chawla ◽  
P. P. Mujumdar

Abstract. Streamflow regime is sensitive to changes in land use and climate in a river basin. Quantifying the isolated and integrated impacts of land use and climate change on streamflow is challenging as well as crucial to optimally manage water resources in the river basin. This paper presents a simple hydrologic modelling based approach to segregate the impacts of land use and climate change on streamflow of a river basin. The upper Ganga basin in India is selected as the case study to carry out the analysis. Streamflow in the river basin is modelled using a calibrated variable infiltration capacity hydrologic model. The approach involves development of three scenarios to understand the influence of land use and climate on streamflow. The first scenario assesses the sensitivity of streamflow to land use changes under invariant climate. The second scenario determines the change in streamflow due to change in climate assuming constant land use. The third scenario estimates the combined effect of changing land use and climate over streamflow of the basin. Based on the results obtained from the three scenarios, quantification of isolated impacts of land use and climate change on streamflow is addressed. Future projections of climate are obtained from dynamically downscaled simulations of six general circulation models (GCMs) available from the Coordinated Regional Downscaling Experiment (CORDEX) project. Uncertainties associated with the GCMs and emission scenarios are quantified in the analysis. Results for the case study indicate that streamflow is highly sensitive to change in urban area and moderately sensitive to change in crop land area. However, variations in streamflow generally reproduce the variations in precipitation. Combined effect of land use and climate on streamflow is observed to be more pronounced compared to their individual impacts in the basin. It is observed from the isolated effects of land use and climate change that climate has a more dominant impact on streamflow in the region. The approach proposed in this paper is applicable to any river basin to isolate the impacts of land use change and climate change on the streamflow.


Author(s):  
Aadil Towheed ◽  
Thendiyath Roshni

Abstract This study assessed the spatio-temporal variability of soil loss based on rainfall–runoff erosivity in the context of climate change in the Kosi river basin. The observed rainfall data (1985–2017) were used for past and present analyses, and the projected rainfall data (2020–2100) interpolated for various general circulation models (GCMs) were used for future analysis. The results of rainfall analysis for the projected period show a maximum percentage variation of 26.2% for a particular GCM and an average of 9.4% increase in the rainfall data from all selected GCMs considering three representative concentration pathways (RCPs). We also evaluated the implications of change in the soil loss due to changes in the rainfall pattern and crop management factor for three time slices. The results for the projected time period showed a concomitant increase in the average soil loss of −13.03–10.39% with respect to the baseline. The average soil loss results for the time period of 2020–2100 are also compared with the average soil loss for each RCP scenario and found very meager changes in the area of soil erosion. The results due to climate change aid in prioritizing the areas with suitable conservation support practices.


Sign in / Sign up

Export Citation Format

Share Document