scholarly journals Electric Vehicle Fast Charging Needs in Cities and along Corridors

2019 ◽  
Vol 10 (2) ◽  
pp. 45 ◽  
Author(s):  
Rick Wolbertus ◽  
Robert Van den Hoed

Fast charging is seen as a means to facilitate long-distance driving for electric vehicles (EVs). As a result, roll-out planning generally takes a corridor approach. However, with higher penetration of electric vehicles in urban areas, cities contemplate whether inner-city fast chargers can be an alternative for the growing amount of slow public chargers. For this purpose, more knowledge is required in motives and preferences of users and actual usage patterns of fast chargers. Similarly, with increasing charging speeds of fast chargers and different modes (taxi, car sharing) also switching to electric vehicles, the effect of charging speed should be evaluated as well as preferences amongst different user groups. This research investigates the different intentions and motivations of EV drivers at fast charging stations to see how charging behaviour at such stations differs using both data analysis from charging stations as a survey among EV drivers. Additionally, it estimates the willingness of EV drivers to use fast charging as a substitute for on-street home charging given higher charging speeds. The paper concludes that limited charging speeds imply that EV drivers prefer parking and charging over fast charging but this could change if battery developments allow higher charging speeds.

Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


2021 ◽  
Author(s):  
F. Chen ◽  
Q. Zhong ◽  
H. Zhang ◽  
M. Zhu ◽  
S. Müller ◽  
...  

2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4682 ◽  
Author(s):  
Grzegorz Sierpiński ◽  
Marcin Staniek ◽  
Marcin Jacek Kłos

Development of electromobility in urban areas requires an appropriate level of vehicle charging infrastructure. Numerous methods for siting of charging stations have been developed to date, and they appear to be delivering diverse outcomes for the same area, which is why local authorities face the problem of choosing the right station layout. The solution proposed in this article is to use a travel planner to evaluate the distribution of charging stations over the area of a metropolis. The decision making support is achieved by determining optimal travel routes for electric vehicles according to their initial state of charge for the three selected station siting methods. The evaluation focused on the following three aspects: (1) number of travels that cannot be made (due to the lack of a charging station at a certain distance around the start point), (2) extension of the travel caused by the need to recharge the vehicle on-route, and (3) additional energy consumption by electric vehicles required to reach the charging station (necessity of departing from the optimal route). An analysis of the results has made it possible to determine a solution which is superior to others. For the case study analysed in the paper, i.e., the territory of the Metropolis of Upper Silesia and Dabrową Basin (Górnośląsko-Zagłębiowska Metropolia, GZM), the distribution of charging stations established in line with method I has returned the best results. What the method in question also makes possible is to indicate a safe minimum energy reserve to complete the travel by eliminating situations of unexpected vehicle immobilisation due to on-route energy depletion and by minimising the phenomenon referred to as range anxiety.


Author(s):  
G. Celli ◽  
G. G. Soma ◽  
F. Pilo ◽  
F. Lacu ◽  
S. Mocci ◽  
...  

2019 ◽  
Vol 23 (2) ◽  
pp. 9-21
Author(s):  
Aivars Rubenis ◽  
Aigars Laizans ◽  
Andra Zvirbule

Abstract This article presents preliminary analysis of the Latvian national EV fast - charging network after the first year of operation. The first phase of Latvian national EV fast-charging network was launched in 2018 with 70 charging stations on the TEN-T roads and in the largest towns and cities. The article looks at the initial results, both looking at the total capacity utilization for individual charging stations, determining the hourly charging distribution; and to the utilization of the network as a whole. The results present that there is a very large dispersion of the data, most of the charging events happening in a few charging stations in and around the capital of Latvia. However, there have been charging events in all charging stations, even in the most remote ones. Even more skewed distribution was observed analyzing the charging habits of the EV users, with 10 % of users accounting for more than half of the charging events. This should be taken into account when considering applying the results for the future, expecting larger number of electric vehicles in Latvia.


Sign in / Sign up

Export Citation Format

Share Document