scholarly journals Perceived Usage Potential of Fast-Charging Locations

2018 ◽  
Vol 9 (1) ◽  
pp. 14 ◽  
Author(s):  
Julia Krause ◽  
Stefan Ladwig ◽  
Lotte Saupp ◽  
Denis Horn ◽  
Alexander Schmidt ◽  
...  

Fast-charging infrastructure with charging time of 20–30 min can help minimizing current perceived limitations of electric vehicles, especially considering the unbalanced and incomprehensive distribution of charging options combined with a long perceived charging time. Positioned on optimal location from user and business perspective, the technology is assumed to help increasing the usage of an electric vehicle (EV). Considering the user perspectives, current and potential EV users were interviewed in two different surveys about optimal fast-charging locations depending on travel purposes and relevant location criteria. The obtained results show that customers prefer to rather charge at origins and destinations than during the trip. For longer distances, charging locations on axes with attractive points of interest are also considered as optimal. From the business model point of view, fast-charging stations at destinations are controversial. The expensive infrastructure and the therefore needed large number of charging sessions are in conflict with the comparatively time consuming stay.

2019 ◽  
Vol 100 ◽  
pp. 00018
Author(s):  
Maciej Gis ◽  
Mateusz Bednarski ◽  
Piotr Orliński

Electromobility is a European vision of future motorization. In Poland, there are plans to introduce a million vehicles of this type by 2030. Currently, their share is marginal (about 1 percent). This vision is to be made real. This is due to the fact that vehicle manufacturers are developing newer EV vehicle constructions. Increasing the number of electric vehicles requires the development of their charging infrastructure. Based on the work of the authors regarding the EV vehicle charging network on the Trans-European Transport Network road network, it was possible to extend this issue with energy calculations related to energy demand for supplying the EV vehicle charging network. This is an important topic from the point of view of the State’s energy needs. The calculations made in the article present the problem of the need to increase the production of electricity, which in the case of Poland is associated with increased emissions of harmful substances and the possibility of periodic interruptions in the supply of electricity. Due to excessive domestic consumption with too little production. The second issue is the need to supply electricity to the charging station (infrastructure), as well as transmission losses, which limit the possibility of building multi-station fast charging stations. The issue presented by the authors in this article is one of the key problems relating to the introduction of electromobility in Poland. The key is to determine how large the demand for electricity in the country will be if a greater number of electric vehicles is put into operation. Considering that there are power shortages during a hot summer, this may affect the possibility of using electric vehicles in the country.


2019 ◽  
Vol 23 (2) ◽  
pp. 9-21
Author(s):  
Aivars Rubenis ◽  
Aigars Laizans ◽  
Andra Zvirbule

Abstract This article presents preliminary analysis of the Latvian national EV fast - charging network after the first year of operation. The first phase of Latvian national EV fast-charging network was launched in 2018 with 70 charging stations on the TEN-T roads and in the largest towns and cities. The article looks at the initial results, both looking at the total capacity utilization for individual charging stations, determining the hourly charging distribution; and to the utilization of the network as a whole. The results present that there is a very large dispersion of the data, most of the charging events happening in a few charging stations in and around the capital of Latvia. However, there have been charging events in all charging stations, even in the most remote ones. Even more skewed distribution was observed analyzing the charging habits of the EV users, with 10 % of users accounting for more than half of the charging events. This should be taken into account when considering applying the results for the future, expecting larger number of electric vehicles in Latvia.


2021 ◽  
Vol 12 (3) ◽  
pp. 117
Author(s):  
Suvetha Poyyamani Poyyamani Sunddararaj ◽  
Shriram S. Rangarajan ◽  
Subashini Nallusamy ◽  
E. Randolph Collins ◽  
Tomonobu Senjyu

The consumer adoption of electric vehicles (EVs) has become most popular. Numerous studies are being carried out on the usage of EVs, the challenges of EVs, and their benefits. Based on these studies, factors such as battery charging time, charging infrastructure, battery cost, distance per charge, and the capital cost are considered factors in the adoption of electric vehicles and their interconnection with the grid. The large-scale development of electric vehicles has laid the path to Photovoltaic (PV) power for charging and grid support, as the PV panels can be placed at the top of the smart charging stations connected to a grid. By proper scheduling of PV and grid systems, the V2G connections can be made simple. For reliable operation of the grid, the ramifications associated with the PV interconnection must be properly addressed without any violations. To overcome the above issues, certain standards can be imposed on these systems. This paper mainly focuses on the various standards for EV, PV systems and their interconnection with grid-connected systems.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7566
Author(s):  
Naireeta Deb ◽  
Rajendra Singh ◽  
Richard R. Brooks ◽  
Kevin Bai

The expansion of electric vehicles made the expansion of charging infrastructure rudimentary to keep up with this developing technology that helps people in a myriad of ways. The main drawback in electric vehicle charging, however, is the time consumed to charge a vehicle. The fast charging of electric vehicles solves this problem thus making it a lucrative technology for consumers. However, the fast charging technology is not without its limitations. In this paper we have identified the technology gaps in EV fast charging stations mostly focused on the extremely fast charging topology. It will help pave a path for researchers to direct their effort in a consolidated manner to contribute to the fast charging infrastructure. A thorough review of all aspects and limitations of existing extremely fast charging (XFC) stations have been identified and supporting data are provided. The importance of DC power network based on free fuel energy sources and silicon carbide-based power electronics are proposed to provide ultra-low cost and ultra-high speed XFC stations.


2022 ◽  
pp. 114-132
Author(s):  
Gagandeep Sharma ◽  
Vijay K. Sood

This chapter discusses the available charging systems for electric vehicles (EV) which include battery electric vehicles (BEV) and plugged hybrid electric vehicles (PHEV). These architectures are categorized as common DC bus charging (CDCB) station and common AC bus charging (CACB) station. CACB charging stations are generally used as slow chargers or semi-fast chargers (on-board chargers). CDCB charging stations are used as fast chargers (off-board chargers). These chargers are vital to popularize the electric vehicles (EVs) as a green alternative to the internal combustion engine (ICE) vehicles. Further, this chapter covers the power quality problems related to the grid-connected fast charging stations (FCS), AC-DC converter, control strategies for converters, proposed system of architectures, methodology, system results with comparisons, and finally, a conclusion.


Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


2021 ◽  
Author(s):  
F. Chen ◽  
Q. Zhong ◽  
H. Zhang ◽  
M. Zhu ◽  
S. Müller ◽  
...  

Author(s):  
Imran Rahman ◽  
Pandian Vasant ◽  
Balbir Singh Mahinder Singh ◽  
M. Abdullah-Al-Wadud

In this chapter, Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) technique were applied for intelligent allocation of energy to the Plug-in Hybrid Electric Vehicles (PHEVs). Considering constraints such as energy price, remaining battery capacity, and remaining charging time, they optimized the State-of-Charge (SoC), a key performance indicator in hybrid electric vehicle for the betterment of charging infrastructure. Simulation results obtained for maximizing the highly non-linear objective function evaluates the performance of both techniques in terms of global best fitness and computation time.


Sign in / Sign up

Export Citation Format

Share Document