Creation of 3D-model of a cultural heritage site using the laser scanner Trimble TX8

2021 ◽  
pp. 150-155
Author(s):  
V. A. Kostesha ◽  
O. A. Marycheva ◽  
I. K. Kolesnikova

The article is about a Trimble TX8 laser scanner used for creation a 3D model of a federal cultural heritage site. For a better disclosure of the topic, the authors explained the main technical parameters of the device, the principles of its operation and the areas of actual application. The accuracy of this scanner and the possibility of using it to preserve the exact parameters of cultural heritage objects have been analyzed here as well. The authors also analyzed the main positive and negative aspects of laser 3D scanning and 3D modeling.

2021 ◽  
Author(s):  
Vincenzo Barrile ◽  
Antonino Fotia

AbstractThere are several studies related to the cultural heritage digitization through HBIM (Heritage Building Information Modelling) techniques. Today, BIM (Building Information Modelling) software cannot represent old buildings with complex prominent and particularly detailed architecture perfectly, and multiple software are combined to obtain the buildings’ representation. In this paper, in order to find an alternative way of replicating the complex details present in antique buildings, a new methodology is presented. The methodology is based on a process of direct insertion of various 3D model parts (.obj), into a BIM environment. These 3D model elements, coming from the points cloud segmentation (from UAV and Laser Scanner), are transformed in intelligent objects and interconnected to form the smart model. The methodology allows to represent detail of the objects that make up an element of cultural heritage, although not standardizable in shape. Although this methodology allows to ensure a perfect reconstruction and digital preservation and to represent the different “defects” that represent and make unique a particular object of cultural heritage, it is not however fast compared with the traditional phases of point cloud tracing and more software are necessary for data processing. The proposed methodology was tested on two specific structures’ reconstruction in Reggio Calabria (South Italy): the Sant’Antonio Abate church and the Vitrioli’s portal.


Author(s):  
S. D’Amelio ◽  
V. Maggio ◽  
B. Villa

The survey in underwater environment has always presented considerable difficulties both operative and technical and this has sometimes made it difficult to use the techniques of survey commonly used for the documentation of Cultural Heritage in dry environment. The work of study concerns the evaluation in terms of capability and accuracy of the Autodesk123DCatch software for the reconstruction of a three-dimensional model of an object in underwater context. The subjects of the study are models generated from sets of photographs and sets of frames extracted from video sequence. The study is based on comparative method, using a reference model, obtained with laser scanner technique.


Author(s):  
Z. Xu ◽  
T. H. Wu ◽  
Y. Shen ◽  
L. Wu

This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.


2021 ◽  
Vol 13 (24) ◽  
pp. 5135
Author(s):  
Yahya Alshawabkeh ◽  
Ahmad Baik ◽  
Ahmad Fallatah

The work described in the paper emphasizes the importance of integrating imagery and laser scanner techniques (TLS) to optimize the geometry and visual quality of Heritage BIM. The fusion-based workflow was approached during the recording of Zee Ain Historical Village in Saudi Arabia. The village is a unique example of traditional human settlements, and represents a complex natural and cultural heritage site. The proposed workflow divides data integration into two levels. At the basic level, UAV photogrammetry with enhanced mobility and visibility is used to map the ragged terrain and supplement TLS point data in upper and unaccusable building zones where shadow data originated. The merging of point clouds ensures that the building’s overall geometry is correctly rebuilt and that data interpretation is improved during HBIM digitization. In addition to the correct geometry, texture mapping is particularly important in the area of cultural heritage. Constructing a realistic texture remains a challenge in HBIM; because the standard texture and materials provided in BIM libraries do not allow for reliable representation of heritage structures, mapping and sharing information are not always truthful. Thereby, at the second level, the workflow proposed true orthophoto texturing method for HBIM models by combining close-range imagery and laser data. True orthophotos have uniform scale that depicts all objects in their respective planimetric positions, providing reliable and realistic mapping. The process begins with the development of a Digital Surface Model (DSM) by sampling TLS 3D points in a regular grid, with each cell uniquely associated with a model point. Then each DSM cell is projected in the corresponding perspective imagery in order to map the relevant spectral information. The methods allow for flexible data fusion and image capture using either a TLS-installed camera or a separate camera at the optimal time and viewpoint for radiometric data. The developed workflows demonstrated adequate results in terms of complete and realistic textured HBIM, allowing for a better understanding of the complex heritage structures.


Author(s):  
Gülhan Benli ◽  
Eylem Görmüş Ekizce

Measurement methods including traditional measurement methods, topographic and photogrammetric measurement methods, measurements via laser scanning devices and aerial photogrammetric measurement methods obtained using model airplane or model helicopters are used in documentation of the cultural heritage and protected areas in our country. Although data obtained by Aerial Lidar technology accepted as advanced technology over the past decade, enables faster data comparing to others as data obtained by terrestrial laser scanners provide millimetre level accuracy close-range scanning methods are preferred in architectural facades scanning during the process of surveying of a single building. Inclusion process of a Byzantine cistern in Istanbul, Turkey, which was undiscovered for centuries, in our cultural heritage as well as surveying stages of the cistern along with the inn structure built over, using 3D scanning technology shall be described within this study.


Author(s):  
TSELISHCHEVA M. ◽  

In 2018-2019, the author took part in the teamwork on the development of a project of restoration of facades of the regional significance heritage monument “VOCATIONAL TECHNICAL SCHOOL” and in the cultural heritage site protection project development. The team has prepared project documentation on the ground of the first-time use of archival materials and other sources. Next, there a state historical and cultural examination of the submitted documentation was carried out, according to the results of which the experts have concluded the compliance of the documents with the current legislation of the Russian Federation in the field of protection of cultural heritage objects. The building was built in Barnaul, Altai Krai in 1942 and was prepared to accommodate the vocational school No. 4, evacuated from Stalingrad (Volgograd). The building has a variable number of storeys with a basement floor and is located in the city center in a row of stone buildings of the Soviet period on Lenina Prospect, with an indentation from the building line. It is an example of an educational building in the forms of Soviet neoclassicism. Keywords: educational building, technical school, evacuated school, architectural monument, monuments of history and culture, objects of cultural heritage


2019 ◽  
pp. 275-303
Author(s):  
Gülhan Benli ◽  
Eylem Görmüş Ekizce

Measurement methods including traditional measurement methods, topographic and photogrammetric measurement methods, measurements via laser scanning devices and aerial photogrammetric measurement methods obtained using model airplane or model helicopters are used in documentation of the cultural heritage and protected areas in our country. Although data obtained by Aerial Lidar technology accepted as advanced technology over the past decade, enables faster data comparing to others as data obtained by terrestrial laser scanners provide millimetre level accuracy close-range scanning methods are preferred in architectural facades scanning during the process of surveying of a single building. Inclusion process of a Byzantine cistern in Istanbul, Turkey, which was undiscovered for centuries, in our cultural heritage as well as surveying stages of the cistern along with the inn structure built over, using 3D scanning technology shall be described within this study.


2021 ◽  
Vol 968 (2) ◽  
pp. 2-10
Author(s):  
H.M. Choker ◽  
M.G. Mustafin

Preservation of cultural heritage is associated with their fixation by performing measurements. They are very effective when we use the terrestrial laser scanning method, as a means of obtaining the most complete and reliable information on the geometry of the object at a particular time. However, the method of laser scanning is not so widely represented in the technical literature, for instance, on Totalstation- or theodolite surveys due to the relatively recent introduction in geodetic practice, especially for the purposes of fixing monuments. There are many questions on application of this technology for the above mentioned aim, they focus on ensuring the required regulatory or its accuracy. The authors discuss a geodetic method for ensuring the precision of laser scanning surveys including the design and estimating the fixed control points’ exactness, as well as the tie ones. The influence of angular and linear measurements over the laser positioning accuracy is shown. The technique is demonstrated, including modeling design schemes and their comparison with actual data. The research results are confined to the world-class cultural heritage site of Baalbek temple complex in Lebanon.


Sign in / Sign up

Export Citation Format

Share Document