scholarly journals As-Textured As-Built BIM Using Sensor Fusion, Zee Ain Historical Village as a Case Study

2021 ◽  
Vol 13 (24) ◽  
pp. 5135
Author(s):  
Yahya Alshawabkeh ◽  
Ahmad Baik ◽  
Ahmad Fallatah

The work described in the paper emphasizes the importance of integrating imagery and laser scanner techniques (TLS) to optimize the geometry and visual quality of Heritage BIM. The fusion-based workflow was approached during the recording of Zee Ain Historical Village in Saudi Arabia. The village is a unique example of traditional human settlements, and represents a complex natural and cultural heritage site. The proposed workflow divides data integration into two levels. At the basic level, UAV photogrammetry with enhanced mobility and visibility is used to map the ragged terrain and supplement TLS point data in upper and unaccusable building zones where shadow data originated. The merging of point clouds ensures that the building’s overall geometry is correctly rebuilt and that data interpretation is improved during HBIM digitization. In addition to the correct geometry, texture mapping is particularly important in the area of cultural heritage. Constructing a realistic texture remains a challenge in HBIM; because the standard texture and materials provided in BIM libraries do not allow for reliable representation of heritage structures, mapping and sharing information are not always truthful. Thereby, at the second level, the workflow proposed true orthophoto texturing method for HBIM models by combining close-range imagery and laser data. True orthophotos have uniform scale that depicts all objects in their respective planimetric positions, providing reliable and realistic mapping. The process begins with the development of a Digital Surface Model (DSM) by sampling TLS 3D points in a regular grid, with each cell uniquely associated with a model point. Then each DSM cell is projected in the corresponding perspective imagery in order to map the relevant spectral information. The methods allow for flexible data fusion and image capture using either a TLS-installed camera or a separate camera at the optimal time and viewpoint for radiometric data. The developed workflows demonstrated adequate results in terms of complete and realistic textured HBIM, allowing for a better understanding of the complex heritage structures.

2013 ◽  
Vol 778 ◽  
pp. 350-357 ◽  
Author(s):  
Clara Bertolini-Cestari ◽  
Filiberto Chiabrando ◽  
Stefano Invernizzi ◽  
Tanja Marzi ◽  
Antonia Spanò

Nowadays, there is an increasing demand for detailed geometrical representation of the existing cultural heritage, in particular to improve the comprehension of interactions between different phenomena and to allow a better decisional and planning process. The LiDAR technology (Light Detection and Ranging) can be adopted in different fields, ranging from aerial applications to mobile and terrestrial mapping systems. One of the main target of this study is to propose an integration of innovative and settled inquiring techniques, ranging from the reading of the technological system, to non-destructive tools for diagnosis and 3D metric modeling of buildings heritage. Many inquiring techniques, including Terrestrial Laser Scanner (TLS) method, have been exploited to study the main room of the Valentino Castle in Torino. The so-called “Salone delle Feste”, conceived in the XVIIth century under the guidance of Carlo di Castellamonte, has been selected as a test area. The beautiful frescos and stuccoes of the domical vault are sustained by a typical Delorme carpentry, whose span is among the largest of their kind. The dome suffered from degradation during the years, and a series of interventions were put into place. A survey has revealed that the suspender cables above the vault in the region close to the abutments have lost their tension. This may indicate an increase of the vault deformation; therefore a structural assessment of the dome is mandatory. The high detailed metric survey, carried out with integrated laser scanning and digital close range photogrammetry, reinforced the structural hypothesis of damages and revealed the deformation effects. In addition, the correlation between the survey-model of the intrados and of the extrados allowed a non-destructive and extensive determination of the dome thickness. The photogram-metrical survey of frescos, with the re-projection of images on vault surface model (texture mapping), is purposed to exactly localize formers restoration and their signs on frescos continuity. The present paper illustrates the generation of the 3D high-resolution model and its relations with the results of the structural survey; both of them support the Finite Element numerical simulation of the dome.


2011 ◽  
Vol 299-300 ◽  
pp. 810-815 ◽  
Author(s):  
Chun Wang ◽  
Xuan Ming Zhang ◽  
Xiao Wang

The large sandwich structure composed of thin-walled aluminum alloy panels, and variable thickness of honeycomb or Polymethacrylimide (PMI) foam core is usually manufactured by pre-bonded forming process, that is pre-forming panels and sandwich core, and then curing adhesive them to be sandwich structure. Welding process of large thin-walled panel causes the panel surface to be irregular and have greater errors relative to the design surface. Simply CNC machining the sandwich core according to the design surface cannot guarantee an exact match sandwich core consistent with the panels. The actual topography of the panels must be scanned. It is proposed that the use of a new hand-held laser scanner, Handyscan to scan large thin-walled curved surface parts, of Geomagic software to handle the acquired point clouds and construct the surface model.


2020 ◽  
Vol 12 (20) ◽  
pp. 3465
Author(s):  
Yahya Alshawabkeh

Heritage recording has received much attention and benefits from recent developments in the field of range and imaging sensors. While these methods have often been viewed as two different methodologies, data integration can achieve different products, which are not always found in a single technique. Data integration in this paper can be divided into two levels: laser scanner data aided by photogrammetry and photogrammetry aided by scanner data. At the first level, superior radiometric information, mobility and accessibility of imagery can be actively used to add texture information and allow for new possibilities in terms of data interpretation and completeness of complex site documentation. In the second level, true orthophoto is generated based on laser data, the results are rectified images with a uniform scale representing all objects at their planimetric position. The proposed approaches enable flexible data fusion and allow images to be taken at an optimum time and position for radiometric information. Data fusion usually involves serious distortions in the form of a double mapping of occluded objects that affect the product quality. In order to enhance the efficiency of visibility analysis in complex structures, a proposed visibility algorithm is implemented into the developed methods of texture mapping and true orthophoto generation. The algorithm filters occluded areas based on a patch processing using a grid square unit set around the projected vertices. The depth of the mapped triangular vertices within the patch neighborhood is calculated to assign the visible one. In this contribution, experimental results from different historical sites in Jordan are presented as a validation of the proposed algorithms. Algorithms show satisfactory performance in terms of completeness and correctness of occlusion detection and spectral information mapping. The results indicate that hybrid methods could be used efficiently in the representation of heritage structures.


Author(s):  
D. Frommholz ◽  
M. Linkiewicz ◽  
A. M. Poznanska

This paper proposes an in-line method for the simplified reconstruction of city buildings from nadir and oblique aerial images that at the same time are being used for multi-source texture mapping with minimal resampling. Further, the resulting unrectified texture atlases are analyzed for fac¸ade elements like windows to be reintegrated into the original 3D models. Tests on real-world data of Heligoland/ Germany comprising more than 800 buildings exposed a median positional deviation of 0.31 m at the fac¸ades compared to the cadastral map, a correctness of 67% for the detected windows and good visual quality when being rendered with GPU-based perspective correction. As part of the process building reconstruction takes the oriented input images and transforms them into dense point clouds by semi-global matching (SGM). The point sets undergo local RANSAC-based regression and topology analysis to detect adjacent planar surfaces and determine their semantics. Based on this information the roof, wall and ground surfaces found get intersected and limited in their extension to form a closed 3D building hull. For texture mapping the hull polygons are projected into each possible input bitmap to find suitable color sources regarding the coverage and resolution. Occlusions are detected by ray-casting a full-scale digital surface model (DSM) of the scene and stored in pixel-precise visibility maps. These maps are used to derive overlap statistics and radiometric adjustment coefficients to be applied when the visible image parts for each building polygon are being copied into a compact texture atlas without resampling whenever possible. The atlas bitmap is passed to a commercial object-based image analysis (OBIA) tool running a custom rule set to identify windows on the contained fac¸ade patches. Following multi-resolution segmentation and classification based on brightness and contrast differences potential window objects are evaluated against geometric constraints and conditionally grown, fused and filtered morphologically. The output polygons are vectorized and reintegrated into the previously reconstructed buildings by sparsely ray-tracing their vertices. Finally the enhanced 3D models get stored as textured geometry for visualization and semantically annotated ”LOD-2.5” CityGML objects for GIS applications.


Author(s):  
G. Tran ◽  
D. Nguyen ◽  
M. Milenkovic ◽  
N. Pfeifer

Full-waveform (FWF) LiDAR (Light Detection and Ranging) systems have their advantage in recording the entire backscattered signal of each emitted laser pulse compared to conventional airborne discrete-return laser scanner systems. The FWF systems can provide point clouds which contain extra attributes like amplitude and echo width, etc. In this study, a FWF data collected in 2010 for Eisenstadt, a city in the eastern part of Austria was used to classify four main classes: buildings, trees, waterbody and ground by employing a decision tree. Point density, echo ratio, echo width, normalised digital surface model and point cloud roughness are the main inputs for classification. The accuracy of the final results, correctness and completeness measures, were assessed by comparison of the classified output to a knowledge-based labelling of the points. Completeness and correctness between 90% and 97% was reached, depending on the class. While such results and methods were presented before, we are investigating additionally the transferability of the classification method (features, thresholds …) to another urban FWF lidar point cloud. Our conclusions are that from the features used, only echo width requires new thresholds. A data-driven adaptation of thresholds is suggested.


Author(s):  
Z. Xu ◽  
T. H. Wu ◽  
Y. Shen ◽  
L. Wu

This paper investigates the synergetic use of unmanned aerial vehicle (UAV) and terrestrial laser scanner (TLS) in 3D reconstruction of cultural heritage objects. Rather than capturing still images, the UAV that equips a consumer digital camera is used to collect dynamic videos to overcome its limited endurance capacity. Then, a set of 3D point-cloud is generated from video image sequences using the automated structure-from-motion (SfM) and patch-based multi-view stereo (PMVS) methods. The TLS is used to collect the information that beyond the reachability of UAV imaging e.g., partial building facades. A coarse to fine method is introduced to integrate the two sets of point clouds UAV image-reconstruction and TLS scanning for completed 3D reconstruction. For increased reliability, a variant of ICP algorithm is introduced using local terrain invariant regions in the combined designation. The experimental study is conducted in the Tulou culture heritage building in Fujian province, China, which is focused on one of the TuLou clusters built several hundred years ago. Results show a digital 3D model of the Tulou cluster with complete coverage and textural information. This paper demonstrates the usability of the proposed method for efficient 3D reconstruction of heritage object based on UAV video and TLS data.


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


2021 ◽  
Vol 10 (5) ◽  
pp. 316
Author(s):  
Yahya Alshawabkeh ◽  
Ahmad Baik ◽  
Yehia Miky

Digital 3D capture and reliable reproduction of architectural features is the first and most difficult step towards defining a heritage BIM. Three-dimensional digital survey technologies, such as TLS and photogrammetry, enable experts to scan buildings with a new level of detail. Challenges in the tracing of parametric objects in a TLS point cloud include the reconstruction of occluded parts, measurement of uncertainties relevant to surface reflectivity, and edge detection and location. In addition to image-based techniques being considered cost effective, highly flexible, and efficient in producing a high-quality 3D textured model, they also provide a better interpretation of surface linear characteristics. This article addresses an architecture survey workflow using photogrammetry and TLS to optimize a point cloud that is sufficient for a reliable HBIM. Fusion-based workflows were proposed during the recording of two heritage sites—the Matbouli House Museum in Historic Jeddah, a UNESCO World Heritage Site; and Asfan Castle. In the Matbouli House Museum building, which is rich with complex architectural features, multi-sensor recording was implemented at different resolutions and levels of detail. The TLS data were used to reconstruct the basic shape of the main structural elements, while the imagery’s superior radiometric data and accessibility were effectively used to enhance the TLS point clouds for improving the geometry, data interpretation, and parametric tracing of irregular objects in the facade. Furthermore, in the workflow that is considered to be the ragged terrain of the Castle of Asfan, here, the TLS point cloud was supplemented with UAV data in the upper building zones where the shadow data originated. Both datasets were registered using an ICP algorithm to scale the photogrammetric data and define their actual position in the construction system. The hybrid scans were imported and processed in the BIM environment. The building components were segmented and classified into regular and irregular surfaces, in order to perform detailed building information modeling of the architectural elements. The proposed workflows demonstrated an appropriate performance in terms of reliable and complete BIM mapping in the complex structures.


Sign in / Sign up

Export Citation Format

Share Document