Peculiarities of land development and construction in the Arctic region, given the dynamics of climate change

2021 ◽  
pp. 1-7
Author(s):  
G.I. Bykova ◽  
M.A. Grippas

The article covers the specifics of land development and construction in the Arctic North. This requires the effective use of climate information to select optimal solutions for preventing unjustified overpricing of facilities, increased heat loss, low thermal resistance, and durability, affecting the overspending of capital investments. Recent trends in dynamic climate change leading to rising global sea levels, which could flood coastal areas of the Arctic seas, are considered. This can come along with the destruction of the coastal area and pose a great danger to infrastructure facilities.

2021 ◽  
pp. 425-431
Author(s):  
G.I. Bykova ◽  
M.A. Grippas

The article reflects the specifics of land development and construction in the Arctic North. It is necessary to use climate information effectively to select the best solutions and to avoid undue overestimation of the cost of facilities, increased heat loss, low heat resistance and strength affecting overspending. Recent trends in the context of dynamic climate change leading to rising sea levels, and possible flooding of coastal areas of the Arctic Seas are considered in this paper. The authors underline a great danger to infrastructure in result of possible destruction of coastal areas. English version of the article is available at URL: https://panor.ru/articles/peculiarities-of-land-development-and-construction-in-the-arctic-region-given-the-dynamics-of-climate-change/64263.html


2019 ◽  
Vol 25 ◽  
pp. 5-19
Author(s):  
María J. Gunnarsdóttir ◽  
Sigurður Magnús Garðarsson ◽  
Hrund Ólöf Andradóttir ◽  
Alfreð Schiöth

Climate change is expected to have impact on water supply and drinking water quality in Iceland. Foremost there are three influential weather-related factors; increase in temperature; rise in sea level; and seasonal and regional change in precipitation in both quantity and intensity. In this study international and local reports and articles were analyzed for expected impact on the water resource with emphasis on the northern and the arctic region. Water quality risk factors were analyzed based on surveillance data of the water supplies from the Local Competent Authorities. Preliminary risk assessment of landslides and flooding was performed in one surveillance area in northern Iceland.


Author(s):  
Ю.Л. Бордученко ◽  
И.Г. Малыгин ◽  
В.Ю. Каминский ◽  
В.А. Аксенов

Арктическая зона в XXI веке становится важнейшим гарантом устойчивого развития Российской Федерации. Вклад Севера в экономику России во многом будет определяться масштабами и темпами развития Арктической транспортной системы. Необходимо расширение коммерческого и научно-исследовательского судоходства, развитие транспортных узлов и коридоров, полярной авиации, грузопассажирских морских полярных перевозок. В этих условиях Россия в целях обеспечения своих геополитических интересов должна постоянно поддерживать активное присутствие в этом регионе. Оно выражается в проведении научных исследований, разведке и добыче полезных ископаемых, обеспечении морских грузоперевозок с использованием ледоколов и специализированных ледокольно-транспортных судов. Этого невозможно достичь без развития уникального атомного ледокольного флота. В настоящее время Россия является мировым лидером в области применения атомного ледокольного флота для решения транспортных задач в морях Арктики и неарктических замерзающих морях. Для успешной конкуренции России необходимо не упускать этого лидерства и постоянно развивать и совершенствовать атомный ледокольный флот как ключевое звено инфраструктуры функционирования Северного морского пути. В статье представлен краткий обзор текущего состояния и перспектив развития атомного ледокольного флота России. Показана определяющая роль атомного ледокольного флота в обеспечении судоходства по трассам Северного морского пути для развития экономики Арктического региона России. The Arctic zone in the XXI century is becoming the most important guarantor of the sustainable development of the Russian Federation. The contribution of the North to the Russian economy will largely be determined by the scale and pace of development of the Arctic Transport System. It is necessary to expand commercial and research shipping, develop transport hubs and corridors, polar aviation, and cargo and passenger sea polar transportation. In these circumstances, Russia must constantly maintain an active presence in this region in order to ensure its geopolitical interests. It is expressed in conducting scientific research, exploration and extraction of minerals, providing sea cargo transportation using icebreakers and specialized icebreaker-transport vessels. This cannot be achieved without the development of a unique nuclear icebreaker fleet. Currently, Russia is a world leader in the use of nuclear-powered icebreaking fleet for solving transport problems in the Arctic seas and non-Arctic freezing seas. For successful competition, Russia must not lose this leadership, constantly develop and improve the nuclear icebreaker fleet as a key link in the infrastructure of the Northern Sea Route. The article provides a brief overview of the current state and prospects for the development of the Russian nuclear icebreaker fleet. The article shows the decisive role of the nuclear icebreaker fleet in ensuring navigation along the Northern Sea Route for the development of the economy of the Arctic region of Russia.


2021 ◽  
Author(s):  
Jadah Elizabeth Folliott

As the pace of climate change continues to accelerate in the North, traditional environmental knowledge systems are increasingly recognized by researchers, land use planners, government agencies, policy-makers and indigenous peoples as important contributors to environmental impact and climate change assessment and monitoring. Increasing temperatures, melting glaciers, reductions in the extent and thickness of sea ice, thawing permafrost and rising sea levels all provide strong evidence of increasing temperatures in the Arctic. This warming climate has the potential to change migration patterns, the diversity, range, and distribution of animal and plant species, and increase contaminants in the food chain from atmospheric transport of organic pollutants and mercury, thus raising concerns regarding the safety of traditional foods. Since 1996, the Arctic Borderlands Ecological Knowledge Co-op (ABEKC) has systematically recorded First Nations, Inupiat and Inuvialuit observations of landscape changes in the lower Mackenzie, Northern Yukon and eastern Alaska. Time-series data (regarding berry, caribou, fish, weather, ice and snow, plants, and other animal observations) have been obtained through annual interviews with the most active fishers, harvesters and hunters in the communities of Aklavik, Arctic Village, Fort McPherson, Kaktovik, Old Crow, and more recently, in Inuvik, Tsiigehtchic, and Tuktoyaktuk. An evaluation of the spatial utility of the ABEKC database and the many steps that are involved in the collection, storage, and organization of the Co-op’s data was documented. The ABEKC database provided an excellent opportunity to explore the problem of depicting complex qualitative information on northern landscape change in an intelligible GIS format. Initial attempts to develop the database in spatial format were critically evaluated and recommendations were provided in order to explore whether the data gathering and subsequent mapping process can be improved, whether more useful information can be obtained from the data, and to ensure the proper handling of the data in future years.


1999 ◽  
Vol 33 (1) ◽  
pp. 81-84
Author(s):  
Jinro Ukila ◽  
Moloyoshi Ikeda

The Frontier Research System for Global Change—the International Arctic Research Center (Frontier-IARC) is a research program funded by the Frontier Research System for Global Change. The program is jointly run under a cooperative agreement between the Frontier Research System for Global Change and the University of Alaska Fairbanks. The aim of the program is to understand the role of the Arctic region in global climate change. The program concentrates its research effort initially on the areas of air-sea-ice interactions, bio-geochemical processes and the ecosystem. To understand the arctic climate system in the context of global climate change, we focus on mechanisms controlling arctic-subarctic interactions, and identify three key components: the freshwater balance, the energy balance, and the large-scale atmospheric processes. Knowledge of details of these components and their interactions will be gained through long-term monitoring, process studies, and modeling; our focus will be on the latter two categories.


2014 ◽  
Vol 43 ◽  
pp. 113-150 ◽  
Author(s):  
Elizabeth Ann Kronk Warner ◽  
Randall S. Abate

The Arctic region is in crisis from the effects of climate change. The impacts of climate change pose a particular threat to Arctic indigenous communities. Because of the disproportionate impacts of climate change, these indigenous communities are environmental justice communities. Part I of this article discusses how indigenous nations are environmental justice communities and discusses the unique factors that may apply to environmental justice claims arising in Indian country. The article then presents two case studies to explore how, if at all, these concepts have been previously applied to environmental justice claims brought by various Arctic indigenous communities. Part II addresses the Inuit Circumpolar Conference’s petition to the Inter-American Commission on Human Rights. Part III considers the Native Village of Kivalina’s lawsuit against numerous private emitters of greenhouse gases. These case studies underscore the failure of international and domestic forums’ consideration of the special situation of Arctic indigenous peoples as environmental justice communities.


2020 ◽  
Vol 1 (1) ◽  
pp. 79-99 ◽  
Author(s):  
Scott MacKenzie ◽  
Anna Westerstahl Stenport

Impactful communication remains a vexing problem for climate science researchers and public outreach. This article identifies a range of moving images and screen-based media used to visualize climate change, focusing especially on the Arctic region and the efforts of the United Nations. The authors examine the aesthetics of big data visualization of melting sea ice and glaciers made by NASA and similar entities; eye-witness, expert accounts and youth-produced documentaries designed for United Nations delegates to the annual COP events such as the Youth Climate Report; Please Help the World, the dystopian cli-fi narrative produced for the UN’s COP 15; and Isuma TV’s streaming of works by Indigenous practitioners in Nunavut.


2020 ◽  
Author(s):  
Gina Moseley ◽  
R. Lawrence Edwards ◽  
Christoph Spötl ◽  
Hai Cheng

<p>The Arctic region is predicted to be one of the most sensitive areas of the world to future anthropogenically-forced climate change, the consequences of which will affect vast numbers of people worldwide, for instance through changes to mid-latitude weather systems and rising eustatic sea levels. Recent changes in temperature and precipitation, and those projected for the future, indicate that some of the greatest changes will occur in Northeast Greenland. Essential knowledge on the climate history of this region, which can be used to validate models and understand forcing mechanisms and teleconnections, is however absent. Here, we present a speleothem palaeoclimate record for Northeast Greenland (80 °N) that formed during Marine Isotopes Stage 15a  between 588 ka to 537 ka. The record indicates that at that time, Northeast Greenland was warmer and wetter than at present associated with a reduction in Arctic sea ice, thawing of permafrost in eastern Siberia (55 °N and 60 °N), and elevated warm conditions at Lake El’gygytgyn (67.5 °N), Russia.</p>


Sign in / Sign up

Export Citation Format

Share Document