The current state of macrozoobenthos of some small reservoirs the North Kazakhstan region

Author(s):  
L. Kovalyova

Awareness of ecosystem integrity increases the relevance of collecting information on the biodiversity of water bodies of various types. The episodic nature of studies of small water bodies, along with the high variability of their hydrological, hydrochemical, and morphometric parameters, is the reason for the lack of a full assessment of the state of biota. The current paper provides information on macrozoobenthos of four small water bodies in the North Kazakhstan region. The study revealed 59 representatives with a predominance of insects in the benthofauna. Bottom complexes of shallow temporary water bodies were characterized by a wider spectrum with a greater proportion of insects relative to similar variables for lake Big Koskol. The basis was composed by species adapted to fluctuations of water availability, which led to a relatively stable state of biocenoses against the background of a significant range of quantitative characteristics of zoobenthos. More abundant development of benthic invertebrates highlighted in the lake Bolshoy Koskol (with the dominance of amphipods) and in the temporary water body T26 (with the predominance of insects). By the size of the average annual zoobenthos biomass — 29–31.5 g / m2 — the mentioned above water bodies were classified as highly productive. The level of development of benthic organisms in water bodies T20–T14, where Vermes were the leaders in biomass assessed as increased productive and moderate productive (10.3–3.1 g/m2 respectively). A low faunistic similarity of macrozoobenthos was noted, indicating the originality of the benthic complexes of the studied water body, which once again emphasizes the role of small water body in maintaining the biodiversity of the ecosystem. Relatively high structural variables of benthocenoses indicate a stable ecological state of bottom communities. The abundance of zoobenthos creates the prerequisites for the utilization of the studied and similar water bodies for organizing amateur — sport fishery and the extraction of feed used in aquarium fish farming

2005 ◽  
Vol 12 (1) ◽  
pp. 31-40 ◽  
Author(s):  
B. S. Daya Sagar

Abstract. Spatio-temporal patterns of small water bodies (SWBs) under the influence of temporally varied stream flow discharge are simulated in discrete space by employing geomorphologically realistic expansion and contraction transformations. Cascades of expansion-contraction are systematically performed by synchronizing them with stream flow discharge simulated via the logistic map. Templates with definite characteristic information are defined from stream flow discharge pattern as the basis to model the spatio-temporal organization of randomly situated surface water bodies of various sizes and shapes. These spatio-temporal patterns under varied parameters (λs) controlling stream flow discharge patterns are characterized by estimating their fractal dimensions. At various λs, nonlinear control parameters, we show the union of boundaries of water bodies that traverse the water body and non-water body spaces as geomorphic attractors. The computed fractal dimensions of these attractors are 1.58, 1.53, 1.78, 1.76, 1.84, and 1.90, respectively, at λs of 1, 2, 3, 3.46, 3.57, and 3.99. These values are in line with general visual observations.


2022 ◽  
Vol 14 (1) ◽  
pp. 200
Author(s):  
Lingjun Wang ◽  
Wanjuan Bie ◽  
Haocheng Li ◽  
Tanghong Liao ◽  
Xingxing Ding ◽  
...  

Small water bodies ranging in size from 1 to 50,000 m2, are numerous, widely distributed, and have various functions in water storage, agriculture, and fisheries. Small water bodies used for agriculture and fisheries are economically significant in China, hence it is important to properly identify and analyze them. In remote sensing technology, water body identification based on band analysis, image classification, and water indices are often designed for large, homogenous water bodies. Traditional water indices are often less accurate for small water bodies, which often contain submerged or floating plants or easily confused with hill shade. Water quality inversion commonly depends on establishing the relationship between the concentration of water constituents and the observed spectral reflectance. However, individual variation in water quality in small water bodies is enormous and often far beyond the range of existing water quality inversion models. In this study, we propose a method for small water body identification and water quality estimation and test its applicability in Wuhan. The kappa coefficient of small water body identification is over 0.95, and the coefficient of determination of the water quality inversion model is over 0.9. Our results show that the method proposed in this study can be employed to accurately monitor the dynamics of small water bodies. Due to the outbreak of the COVID-19 pandemic, the intensity of human activities decreased. As a response, significant changes in the water quality of small water bodies were observed. The results also suggest that the water quality of small water bodies under different production modes (intensive/casual) respond differently in spatial and temporal dimensions to the decrease in human activities. These results illustrate that effective remote sensing monitoring of small water bodies can provide valuable information on water quality.


Author(s):  
Natalia Kuczyńska-Kippen ◽  
Barbara Nagengast ◽  
Tomasz Joniak

The impact of biometric parameters of a hydromacrophyte habitat on the structure of zooplankton communities in various types of small water bodies


Author(s):  
Christopher Mulanda Aura ◽  
Ruth Lewo Mwarabu ◽  
Chrisphine S. Nyamweya ◽  
Horace Owiti ◽  
Collins Onyango Ongore ◽  
...  

2022 ◽  
Vol 14 (1) ◽  
pp. 229
Author(s):  
Jiarui Shi ◽  
Qian Shen ◽  
Yue Yao ◽  
Junsheng Li ◽  
Fu Chen ◽  
...  

Chlorophyll-a concentrations in water bodies are one of the most important environmental evaluation indicators in monitoring the water environment. Small water bodies include headwater streams, springs, ditches, flushes, small lakes, and ponds, which represent important freshwater resources. However, the relatively narrow and fragmented nature of small water bodies makes it difficult to monitor chlorophyll-a via medium-resolution remote sensing. In the present study, we first fused Gaofen-6 (a new Chinese satellite) images to obtain 2 m resolution images with 8 bands, which was approved as a good data source for Chlorophyll-a monitoring in small water bodies as Sentinel-2. Further, we compared five semi-empirical and four machine learning models to estimate chlorophyll-a concentrations via simulated reflectance using fused Gaofen-6 and Sentinel-2 spectral response function. The results showed that the extreme gradient boosting tree model (one of the machine learning models) is the most accurate. The mean relative error (MRE) was 9.03%, and the root-mean-square error (RMSE) was 4.5 mg/m3 for the Sentinel-2 sensor, while for the fused Gaofen-6 image, MRE was 6.73%, and RMSE was 3.26 mg/m3. Thus, both fused Gaofen-6 and Sentinel-2 could estimate the chlorophyll-a concentrations in small water bodies. Since the fused Gaofen-6 exhibited a higher spatial resolution and Sentinel-2 exhibited a higher temporal resolution.


2018 ◽  
Vol 45 (2) ◽  
pp. 199-204 ◽  
Author(s):  
T. N. Gerasimova ◽  
P. I. Pogozhev ◽  
A. P. Sadchikov

Sign in / Sign up

Export Citation Format

Share Document