scholarly journals COMPUTER SIMULATION WITH ARGUMENTATION SCAFFOLDING FOR ELEMENTARY STUDENTS' COLLABORATIVE SCIENTIFIC EXPLANATION

Author(s):  
Amal R. Malkawi ◽  
Rashid J. Al Maamari

This study aimed to detect the impact of using computer simulation on correcting physical misconceptions in the subject of periodic motion among the eleventh grade students in the Sultanate of Oman. The researchers used a quasi-experimental approach and the study sample consisted of 128 of eleventh grade. Students were selected randomly in a deliberate manner from two schools, in the North Batinah Governorate. The students were distributed into two groups; experimental and control. The experimental group consisted from (65 students) and studied the scientific material related to the unit of periodic motion using computer simulation. The control group consisted of 63 students and studied the same scientific material by traditional method.The study found a diverse and wide series of misconceptions in the subject of periodic motion and revealed the inability of students to provide a true scientific explanation for many phenomena that are related to the periodic motion. The study also found significant statistical differences in correcting the misconceptions sample in the subject of periodic motion due to teaching methods in favor of the experimental group. The study didn’t show statistically significant differences due to gender.


Author(s):  
Juan M. Durán

AbstractA chronicled approach to the notion of computer simulations shows that there are two predominant interpretations in the specialized literature. According to the first interpretation, computer simulations are techniques for finding the set of solutions to a mathematical model. I call this first interpretation the problem-solving technique viewpoint (PST). In its second interpretation, computer simulations are considered to describe patterns of behavior of a target system. I call this second interpretation the description of patterns of behavior viewpoint of computer simulations (DPB). This article explores these two interpretations of computer simulations from three different angles. First, I collect a series of definitions of computer simulation from the historical record. I track back definitions to the early 1960s and show how each viewpoint shares similar interpretations of computer simulations—ultimately clustering into the two viewpoints aforementioned. This reconstruction also includes the most recent literature. Second, I unpack the philosophical assumptions behind each viewpoint, with a special emphasis on their differences. Third, I discuss the philosophical implications of each viewpoint in the context of the recent discussion on the logic of scientific explanation for computer simulations.


Author(s):  
Kiyomichi Nakai ◽  
Yusuke Isobe ◽  
Chiken Kinoshita ◽  
Kazutoshi Shinohara

Induced spinodal decomposition under electron irradiation in a Ni-Au alloy has been investigated with respect to its basic mechanism and confirmed to be caused by the relaxation of coherent strain associated with modulated structure. Modulation of white-dots on structure images of modulated structure due to high-resolution electron microscopy is reduced with irradiation. In this paper the atom arrangement of the modulated structure is confirmed with computer simulation on the structure images, and the relaxation of the coherent strain is concluded to be due to the reduction of phase-modulation.Structure images of three-dimensional modulated structure along <100> were taken with the JEM-4000EX high-resolution electron microscope at the HVEM Laboratory, Kyushu University. The transmitted beam and four 200 reflections with their satellites from the modulated structure in an fee Ni-30.0at%Au alloy under illumination of 400keV electrons were used for the structure images under a condition of the spherical aberration constant of the objective lens, Cs = 1mm, the divergence of the beam, α = 3 × 10-4 rad, underfocus, Δf ≃ -50nm and specimen thickness, t ≃ 15nm. The CIHRTEM code was used for the simulation of the structure image.


2019 ◽  
Vol 3 (6) ◽  
pp. 723-729
Author(s):  
Roslyn Gleadow ◽  
Jim Hanan ◽  
Alan Dorin

Food security and the sustainability of native ecosystems depends on plant-insect interactions in countless ways. Recently reported rapid and immense declines in insect numbers due to climate change, the use of pesticides and herbicides, the introduction of agricultural monocultures, and the destruction of insect native habitat, are all potential contributors to this grave situation. Some researchers are working towards a future where natural insect pollinators might be replaced with free-flying robotic bees, an ecologically problematic proposal. We argue instead that creating environments that are friendly to bees and exploring the use of other species for pollination and bio-control, particularly in non-European countries, are more ecologically sound approaches. The computer simulation of insect-plant interactions is a far more measured application of technology that may assist in managing, or averting, ‘Insect Armageddon' from both practical and ethical viewpoints.


Sign in / Sign up

Export Citation Format

Share Document