A method to estimate hydrodynamic noise produced in valves by submerged turbulent and cavitating water jets

2004 ◽  
Vol 52 (2) ◽  
pp. 49 ◽  
Author(s):  
Hans D. Baumann ◽  
Joerg Kiesbauer
2018 ◽  
Vol 1(91) (1) ◽  
pp. 7-32
Author(s):  
V.A. Voskoboinick ◽  
◽  
A.A. Voskoboinick ◽  
A.V. Voskoboinick ◽  
F. Lucherini ◽  
...  

2018 ◽  
Vol 232 ◽  
pp. 02005
Author(s):  
Bin Li ◽  
Song Guo ◽  
Wei Li ◽  
Deman Zhang ◽  
Nei Wang

Comprehensive characteristics of a pneumatic underwater launching system were analyzed and the simulation was carried out by simulink. The components of the pneumatic underwater launching system were introduced, and the theoretical calculation formula for the system was derived. A rated pressure of 3.5MPa and 5MPa was offered in the numerical work. Analyses in different piston height show good behaviors: Proper increase of piston-initial accumulator pressure is beneficial to reduce hydrodynamic noise, choose the appropriate pressure of accumulator. The hydrodynamic noise of the system can be significantly reduced by optimizing the structure of the double-acting cylinder, increasing the height of the piston and improving the structure of the piston.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 492
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Mikhail A. Sheremet

In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results.


2007 ◽  
Vol 19 (5) ◽  
pp. 053102 ◽  
Author(s):  
Tomiichi Hasegawa ◽  
Hiroshi Watanabe ◽  
Takashi Sato ◽  
Tohru Watanabe ◽  
Masanao Takahashi ◽  
...  
Keyword(s):  

2008 ◽  
Vol 134 (6) ◽  
pp. 833-842 ◽  
Author(s):  
Iran E. Lima Neto ◽  
David Z. Zhu ◽  
Nallamuthu Rajaratnam
Keyword(s):  

2012 ◽  
Vol 217-219 ◽  
pp. 2590-2593 ◽  
Author(s):  
Yu Wang ◽  
Bai Zhou Li

The flow past 3D rigid cavity is a common structure on the surface of the underwater vehicle. The hydrodynamic noise generated by the structure has attracted considerable attention in recent years. Based on LES-Lighthill equivalent sources method, a 3D cavity is analyzed in this paper, when the Mach number is 0.0048. The hydrodynamic noise and the radiated mechanism of 3D cavity are investigated from the correlation between fluctuating pressure and frequency, the near-field sound pressure intensity, and the propagation directivity. It is found that the hydrodynamic noise is supported by the low frequency range, and fluctuating pressure of the trailing-edge is the largest, which is the main dipole source.


2021 ◽  
Author(s):  
Mohammad Jahedi ◽  
Bahram Moshfegh

Abstract Transient heat transfer studies of quenching rotary hollow cylinders with in-line and staggered multiple arrays of jets have been carried out experimentally. The study involves three hollow cylinders (Do/d = 12 to 24) with rotation speed 10 to 50 rpm, quenched by subcooled water jets (ΔTsub=50-80 K) with jet flow rate 2.7 to 10.9 L/min. The increase in area-averaged and maximum heat flux over quenching surface (Af) has been observed in the studied multiple arrays with constant Qtotal compared to previous studies. Investigation of radial temperature distribution at stagnation point of jet reveals that the footprint of configuration of 4-row array is highlighted in radial distances near the outer surface and vanishes further down toward the inner surface. The influence of the main quenching parameters on local average surface heat flux at stagnation point is addressed in all the boiling regimes where the result indicates jet flow rate provides strongest effect in all the boiling regimes. Effectiveness of magnitude of maximum heat flux in the boiling curve for the studied parameters is reported. The result of spatial and temporal heat flux by radial conduction in the solid presents projection depth of cyclic variation of surface heat flux in the radial axis as it disappears near inner surface of hollow cylinder. In addition, correlations are proposed for area-averaged Nusselt number as well as average and maximum local heat flux at stagnation point of jet for the in-line and staggered multiple arrays.


Sign in / Sign up

Export Citation Format

Share Document