Peramalan Penjualan Barang Single Variant Menggunakan Metode Arima, Trend Analysis, Dan Single Exponential Smoothing (Studi Kasus : Toko Swalayan XYZ)

Author(s):  
Fajar Sidqi ◽  
Irfan Dwiguna Sumitra

Ketersediaan barang pada suatu toko menjadi hal yang sangat penting. Peramalan (forecasting) merupakan alat bantu yang digunakan untuk membantu meramalkan suatu data yang dibutuhkan organisasi atau perusahaan. Tujuan dari penelitian ini yaitu untuk meramalkan penjualan suatu produk yang mempunyai risiko kerusakan yang tinggi dan waktu kadaluarsa yang cepat dengan menggunakan teknik yang ada dalam forecasting. Peramalan juga dapat digunakan untuk membuat pengaman stok produk pada Toko Swalayan XYZ. Hasil penelitian ini berupa peramalan penjualan suatu produk pada toko dengan menggunakan metode yang ada pada forecasting yang disesuaikan dengan data penjualan satu produk. Metode yang digunakan dalam peramalan yaitu metode ARIMA, Trend Analysis, dan Single Exponential Smoothing. Metode Trend Analysis memiliki tingkat akurasi paling tinggi dengan MAPE 9.91%, yang berarti peramalan sangat baik, dibandingkan ARIMA dengan MAPE 37.21% dan Single Exponential Smoothing dengan MAPE 10%. Sehingga hasil dari peramalan Trend Analysis akan digunakan untuk proses pengambilan keputusan tentang peramalan stok barang dan pengaman stok pada masa yang akan datang.

2020 ◽  
Vol 7 (1) ◽  
pp. 22-30
Author(s):  
FAUZI EMLAN ◽  
Wawan Eka Putra ◽  
Andi Ishak ◽  
Herlena Bidi Astuti

ABSTRACT This study aims to examine the best forecasting model for the export price of Indonesian coffee. The data used in this study are monthly data on coffee prices from January 2012 to September 2019. Three price forecasting models used are moving average, single exponential smoothing and trend analysis are applied to determine the best model based on the lowest MAPE, MAD, and MSE values. The results showed the best model for forecasting the export price of coffee is the moving average (MA1) model because it has the smallest MAPE, MAD and MSE values ​​compared to other models. Keywords: Price, Coffee, Forecasting, Export


2020 ◽  
Vol 7 (1) ◽  
pp. 31-40
Author(s):  
Afrizon Afrizon ◽  
Andi Ishak ◽  
Darkam Mussaddad

This study aims to examine the best forecasting model for the export price of Indonesian coffee. The data used in this study are monthly data on coffee prices from January 2012 to September 2019. Three price forecasting models used are moving average, single exponential smoothing and trend analysis are applied to determine the best model based on the lowest MAPE, MAD, and MSE values. The results showed the best model for forecasting the export price of coffee is the moving average (MA1) model because it has the smallest MAPE, MAD and MSE values ​​compared to other models. Keywords: Price; Coffee; Forecasting; Export


2019 ◽  
Vol 8 (4) ◽  
pp. 2105-2108

Rainfall is the precipitation amount that is falling from clouds. In extreme conditions, rainfall could arise many problems. It is the leading cause of landslides and flood disasters. In D.K.I. Jakarta, the capital city of Indonesia, rainfall intensity plays a very vital role since it could easily be puddled and caused floods in many areas. Therefore, in this study, we try to make a rainfall intensity prediction in Central Jakarta using a very popular forecasting method, i.e., the Single Exponential Smoothing (SES). Based on the experiments conducted using Phatsa, it can be concluded that the SES method has been successfully used to predict rainfall intensity. However, it cannot give a very good prediction result due to its high forecast error values.


SINERGI ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 36
Author(s):  
Putri Sari Dewi ◽  
Dana Santoso Saroso

Semakin berkembangnya dunia industri perusahaan manufaktur membuat semakin ketatnya  persaingan pasar untuk mencukupi kebutuhan konsumen. Selain itu perusahaan juga dituntut untuk dapat memuaskan konsumen dengan cara  menyelesaikan pesanan konsumen tepat pada waktunya. Sehingga perlu ditunjang oleh sistem produksi yag efisien. Untuk dapat menciptakan sistem produksi yang efisien maka diperlukan suatu perencanaan yang baik. Peramalan dan perencanaan material untuk box panel menjadi alasan yang kuat untuk meminimalkan stok gudang, khususnya PT. TIS.  Adapun untuk perencanaan persediaan material box panel tersebut memerlukan peramalan yang optimal dengan memafaatkan metode Simple Moving Average (SMA) dan Single Exponential Smoothing (SES). Dengan membandingkan kedua metode tersebut dihasilkan data bahwa dengan metode Simple Moving Average menghasilkan nilai eror (MAD dan MSE) paling kecil, yaitu sebesar MAD 7,3 dan MSE 72. Sedangkan untuk perencanaan material menggunakan metode MRP Lot for Lot (LFL) dan Fixed Order Quantity (FOQ). Hasil perbandingan kedua metode tersebut menghasilan sistem Lot for Lot lebih efisien dan sesuai diterapkan pada PT. TIS karena total biaya persediaan minimum, yaitu sebesar Rp 199.692.470.


2019 ◽  
Vol 6 (1) ◽  
pp. 41
Author(s):  
Jaka Darma Jaya

Perkembangan produksi daging sapi di Indonesia selama 30 tahun terakhir secara umum cenderung meningkat. Kebutuhan daging sapi di Indonesia masih belum bisa dicukupi oleh supply domestik, sehingga diperlukan impor daging sapi dari luar negeri.  Diperlukan kajian tentang proyeksi ketersediaan populasi sapi potong di masa mendatang agar diambil kebijakan yang tepat dalam menjaga stabilitas dan keterpenuhan supply daging nasional.  Penelitian ini bertujuan untuk melakukan peramalan jumlah populasi sapi potong menggunakan 3 (tiga) metode peramalan yaitu metode moving average, exponential smoothing dan trend analysis.  Hasil peramalan ini selanjutnya diukur akurasinya menggunakan MAD (Mean Absolud Deviation), MSE (Mean Squared Error) dan MAPE (Mean Absolute Percentage Error).  Proyeksi populasi sapi potong pada tahun 2019 (periode berikutnya) menggunakan 3 metode peramalan adalah: 195.100 (moving average); 218.225 (exponential smooting) dan 262.899 (trend analysis). Pengukuran akurasi menggunakan MAD, MSE dan MAPE menunjukkan bahwa metode peramalan jumlah populasi sapi potong yang paling akurat adalah peramalan menggunakan metode polynomial trend analysis (MAD 14.716,12;  MSE 327.282.084,17; dan MAPE 0,09) karena memiliki tingkat kesalahan yang lebih kecil dibandingkan hasil peramalan menggunakan metode moving average dan exponential smoothing.


2021 ◽  
Vol 8 (2) ◽  
pp. 117-122
Author(s):  
Sambas Sundana ◽  
Destri Zahra Al Gufronny

Permasalahan yang dihadapi PT. XYZ yaitu kesulitan dalam menentukan jumlah permintaan produk yang harus tersedia untuk periode berikutnya agar tetap dapat memenuhi kebutuhan pelanggan dan tidak menyebabkan penumpukan barang dalam jangka waktu yang lama terutama produk SN 5 ML yang memiliki permintaan jumlah paling besar dari produk lainnya. Tujuan dari penelitian ini yaitu menentukan metode peramalan yang tepat untuk meramalkan jumlah permintaan produk SN 5 ml periode Januari sampai dengan Desember 2021 Metode yang digunakan dalam penelitian ini yaitu metode peramalan Moving Average (MA), Weighted Moving Average (WMA), Single Exponential Smoothing (SES), dan Double Exponential Smoothing (DES). Adapun langkah langkah peramalan yang dilakukan yaitu menentukan tujuan peramalan,memilih unsur apa yang akan diramal, menentukan horizon waktu peramalan (pendek, menengah, atau panjang), memilih tipe model peramalan, mengumpulkan data yang di perlukan untuk melakukan peramalan, memvalidasi dan menerapkan hasil peramalan Berdasarkan perhitungan didapat metode peramalan dengan persentase tingkat kesalahan terkecil dibandingkan dengan metode lainnya yaitu  metode Moving Average (MA) dengan hasil yang diperoleh permintaan produk SN 5 ML pada bulan Januari sampai dengan Desember 2021 yaitu sebanyak 22.844.583 unit


2019 ◽  
Vol 125 ◽  
pp. 23006
Author(s):  
Dyna Marisa Khairina ◽  
Aqib Muaddam ◽  
Septya Maharani ◽  
Heliza Rahmania

Setting the target of groundwater tax revenues for the next year is an important thing for Kutai Kartanegara Regional Office of Revenue to maximize the regional income and accelerate regional development. Process of setting the target of groundwater tax revenue for the next year still using estimation only and not using a mathematical calculation method that can generate target reference value. If the realization of groundwater tax revenue is not approaching the target, the implementation of development in the Government of Kutai Kartanegara can be disrupted. The mathematical method commonly used to predict revenue value is the Single Exponential Smoothing (SES) method, which uses alpha constant value which is randomly selected for the calculation process. Forecasting of groundwater tax revenue for 2018 using groundwater tax revenue data from 2013 to 2017. Single Exponential Smoothing method using alpha constant value consists of 0.1, 0.2, 0.3, 0.4 and 0.5. The forecasting error value of each alpha value is calculated using the Mean Absolute Percentage Error (MAPE) method. The best result is forecasting using alpha value 0.1 with MAPE error value was 45.868 and the best forecasting value of groundwater tax for 2018 is Rp 443.904.600,7192.


2017 ◽  
Vol 11 (3) ◽  
pp. 135 ◽  
Author(s):  
Siti Wardah ◽  
Iskandar Iskandar

Peramalan adalah metode untuk memperkirakan suatu nilai dimasa depan dengan menggunakan data masa lalu. Penelitian ini dilakukan pada Home Industry Arwana Food. Pada penelitian ini, penulis membahas mengenai analisis peramalan penjualan produk kripik pisang untuk jenis kemasan bungkus. Peramalan yang dilakukan mengggunakan tiga metode yaitu metode Moving Average, metode Exponential Smoothing with Trend dan metode Trend Anayisis dengan membandingkan tingkat kesalahan (error) terkecil, maka metode peramalan yang  terpilih yaitu metode Trend Analysis, dengan nilai MAD sebesar 161,3539, MSE sebesar 55744,16, dan standar error sebesar 242,947. Dari analisis pengolahan data yang telah dilakukan berdasarkan metode peramalan yang terpilih, peramalan penjualan terhadap produk kripik pisang jenis kemasan bungkus adalah sebanyak 1121,424 atau 1122 bungkus/bulan, artinya pihak Home Industry Arwana Food Tembilahan harus menyediakan produk kripik pisang kemasan bungkus adalah sebanyak 1122 bungkus untuk tiap bulannya.      ABSTRACT Forecasting is a method to estimate a value of the future using past data. This research was conducted at the Home Industry Arowana Food. In this study, the authors discuss the analysis of product sales forecasting banana chips for this type of packaging wrap. Forecasting that do use traditional three methods are methods Moving Average, Exponential Smoothing method with Trend and Trend Anayisis method by comparing the level of errors (error) the smallest, then the selected forecasting method is the method of Trend Analysis, with a value of 161.3539 MAD, MSE of 55744 , 16, and the standard error of 242.947. From the analysis of data processing that has been carried out based on the method chosen forecasting, sales forecasting for products banana chips are as many types of packaging wrap 1121.424 or 1 122 packs / month, meaning the Home Industry Arowana Food Tembilahan must provide products banana chips wrapped packs is as much as 1122 wrap for each month.


Sign in / Sign up

Export Citation Format

Share Document