The effect of temperature on the activity of the trigeminal nerve in the rat meningeal sheath

Author(s):  
A.I. Fedorina ◽  
O.Sh. Gafurov

Migraine is a debilitating neurological disorder that affects approximately 1 billion people worldwide. It is known that migraine is associated with the activity of the trigeminal nerve, therefore, many studies are aimed at studying changes in the activity of the meningeal nerve fibers. It is known that inflammatory processes accompanied by temperature rise are often accompanied by headaches. Therefore, we investigated the effect of temperature increase on trigeminal nerve activity. It turned out that temperature increase leads to a significant increase in the frequency of action potentials in the trigeminal nerve. Key words: migraine, trigeminal nerve, cluster analysis, action potential.

1988 ◽  
Vol 118 (3) ◽  
pp. 471-483 ◽  
Author(s):  
L. M. Voloschin ◽  
E. Décima ◽  
J. H. Tramezzani

ABSTRACT Electrical stimulation of the XIII thoracic nerve (the 'mammary nerve') causes milk ejection and the release of prolactin and other hormones. We have analysed the route of the suckling stimulus at the level of different subgroups of fibres of the teat branch of the XIII thoracic nerve (TBTN), which innervates the nipple and surrounding skin, and assessed the micromorphology of the TBTN in relation to lactation. There were 844 ± 63 and 868 ± 141 (s.e.m.) nerve fibres in the TBTN (85% non-myelinated) in virgin and lactating rats respectively. Non-myelinated fibres were enlarged in lactating rats; the modal value being 0·3–0·4 μm2 for virgin and 0·4–0·5 μm2 for lactating rats (P > 0·001; Kolmogorov–Smirnov test). The modal value for myelinated fibres was 3–6 μm2 in both groups. The compound action potential of the TBTN in response to electrical stimulation showed two early volleys produced by the Aα- and Aδ-subgroups of myelinated fibres (conduction velocity rate of 60 and 14 m/s respectively), and a late third volley originated in non-myelinated fibres ('C') group; conduction velocity rate 1·4 m/s). Before milk ejection the suckling pups caused 'double bursts' of fibre activity in the Aδ fibres of the TBTN. Each 'double burst' consisted of low amplitude action potentials and comprised two multiple discharges (33–37 ms each) separated by a silent period of around 35 ms. The 'double bursts' occurred at a frequency of 3–4/s, were triggered by the stimulation of the nipple and were related to fast cheek movements visible only by watching the pups closely. In contrast, the Aα fibres of the TBTN showed brief bursts of high amplitude potentials before milk ejection. These were triggered by the stimulation of cutaneous receptors during gross slow sucking motions of the pup (jaw movements). Immediately before the triggering of milk ejection the mother was always asleep and a low nerve activity was recorded in the TBTN at this time. When reflex milk ejection occurred, the mother woke and a brisk increase in nerve activity was detected; this decreased when milk ejection was accomplished. In conscious rats the double-burst type of discharges in Aδ fibres was not observed, possibly because this activity cannot be detected by the recording methods currently employed in conscious animals. During milk ejection, action potentials of high amplitude were conveyed in the Aα fibres of the TBTN. During the treading time of the stretch reaction (SR), a brisk increase in activity occurred in larger fibres; during the stretching periods of the SR a burst-type discharge was again observed in slow-conducting afferents; when the pups changed nipple an abrupt increase in activity occurred in larger fibres. In summary, the non-myelinated fibres of the TBTN are increased in diameter during lactation, and the pattern of suckling-evoked nerve activity in myelinated fibres showed that (a) the double burst of Aδ fibres, produced by individual sucks before milk ejection, could be one of the conditions required for the triggering of the reflex, and (b) the nerve activity displayed during milk-ejection action may result, at least in part, from 'non-specific' stimulation of cutaneous receptors. J. Endocr. (1988) 118, 471–483


1973 ◽  
Vol 58 (3) ◽  
pp. 677-688
Author(s):  
BERND HEINRICH ◽  
ANN E. KAMMER

1. Extracellular action potentials and thoracic temperatures (TTh) were simultaneously recorded from the fibrillar flight muscles of Bombus vosnesenskii queens during preflight warm-up, during stabilization of TTh in stationary bees, and during fixed flight. 2. In most stationary bees during warm-up and during the stabilization of TTh the rate of heat production, as calculated from thoracic temperature and passive rates of cooling, is directly related to the frequency of action potentials in the muscles. 3. The rate of heat production increases throughout warm-up primarily because of a greater spike frequency at higher TTh. 4. In stationary bees during the stabilization of TTh at different ambient temperatures (TA) the fibrillar muscles are activated by any in a continuous range of spike frequencies, rather than only by on-off responses. 5. Regulation of TTh in stationary bees may involve not only changes in the rate of heat production but also variations of heat transfer from the thorax to the abdomen. 6. During fixed flight the fibrillar muscles are usually activated at greater rates at the initiation of flight than later in flight, but the spike frequency and thus heat production are not varied in response to differences in TA and heating and cooling rates. 7. During fixed flight TTh is not regulated at specific set-points; TTh appears to vary passively in accordance with the physical laws of heating and cooling. 8. Differences in the TTh of bees in free and in fixed flight are discussed with regard to mechanisms of thermoregulation.


2021 ◽  
Author(s):  
A.D. Buglinina ◽  
T.M. Verkhoturova ◽  
O.Sh. Gafurov ◽  
K.S. Koroleva ◽  
G.F. Sitdikova

The central problem of this work is to elucidate the mechanisms of pain in migraine and to establish the role of Kv channels in regulating the excitability of meningeal afferents of the trigeminal nerve that form a pain signal in migraine. The study was conducted on a preparation of an isolated rat skull. It was found that Kv-channel inhibitors 4-aminopyridine (100 microns and 1 mM) and tetraethylammonium (5mm) lead to an increase in the excitability of trigeminal nerve afferents, at the same time, this effect was partially removed by a nonsteroidal anti–inflammatory agent - naproxen, and was not sensitive to sumatriptan, a classic anti-migraine drug. Key words: migraine, K-channels, trigeminal nerve, 4-aminopyridine, tetraethylammonium, naproxen, sumatriptan.


Author(s):  
Akiko Kato ◽  
Megumi Nakamura ◽  
Seishi Echigo ◽  
Yasuyuki Sasano

2015 ◽  
Vol 25 (2) ◽  
pp. 191
Author(s):  
Nejc Sarabon

Munari powder is broadly used in physical medicine and rehabilitation to decrease pain and help normalize sensory-motor function. It operates as TPRV1 agonist and “stops” generation of action potentials in pain nerve fibers. This is a short report of a pilot study on 20 subjects. Every subject underwent four visits to our laboratory, where the Munari applications and related measurements of its effects took place. Each of the healthy adults received the following applications: (1) placebo, i.e. 0% cayenne pepper mixture, consisting only of water and kaolin, (2) weak, i.e. 2.5% cayenne pepper mixture, (3) medium, i.e. 5.0% cayenne pepper mixture, and (4) strong, i.e. 10% cayenne pepper mixture. The assessments were carried out before the Munari powder patch application, right after the application, and 15 and 30 min after the termination of the 20-minute Munari powder patch application. We measured subjective cold/hot feeling on visual analogue scale, blood pressure, body temperature, skin light touch sensations, sense for two-point discrimination, and pain threshold to the mechanical stimulus. Besides these tests, maximal voluntary force during isometric trunk extension and the sitting balance test were performed. The preliminary results indicate that the 5% concentration of cayenne pepper mixture is the best choice because no additional effects were observed with the 10% concentration and the effects are higher than with 2.5% concentration. Whether this will be also thrue for the patients suffering pain ought to be determined.


1998 ◽  
Vol 79 (4) ◽  
pp. 1746-1754 ◽  
Author(s):  
Andreas Scholz ◽  
Noboru Kuboyama ◽  
Gunter Hempelmann ◽  
Werner Vogel

Scholz, Andreas, Noboru Kuboyama, Gunter Hempelmann, and Werner Vogel. Complex blockade of TTX-resistant Na+ currents by lidocaine and bupivacaine reduce firing frequency in DRG neurons. J. Neurophysiol. 79: 1746–1754, 1998. Mechanisms of blockade of tetrodotoxin-resistant (TTXr) Na+ channels by local anesthetics in comparison with the sensitivity of tetrodotoxin-sensitive (TTXs) Na+ channels were studied by means of the patch-clamp technique in neurons of dorsal root ganglions (DRG) of rat. Half-maximum inhibitory concentration (IC50) for the tonic block of TTXr Na+ currents by lidocaine was 210 μmol/l, whereas TTXs Na+ currents showed five times lower IC50 of 42 μmol/l. Bupivacaine blocked TTXr and TTXs Na+ currents more potently with IC50 of 32 and 13 μmol/l, respectively. In the inactivated state, TTXr Na+ channel block by lidocaine showed higher sensitivities (IC50 = 60 μmol/l) than in the resting state underlying tonic blockade. The time constant τ1 of recovery of TTXr Na+ channels from inactivation at −80 mV was slowed from 2 to 5 ms after addition of 10 μmol/l bupivacaine, whereas the τ2 value of ∼500 ms remained unchanged. The use-dependent block of TTXr Na+ channels led to a progressive reduction of current amplitudes with increasing frequency of stimulation, which was ≤53% block at 20 Hz in 10 μmol/l bupivacaine and 81% in 100 μmol lidocaine. The functional importance of the use-dependent block was confirmed in current-clamp experiments where 30 μmol/l of lidocaine or bupivacaine did not suppress the single action potential but clearly reduced the firing frequency of action potentials again with stronger potency of bupivacaine. Because it was found that TTXr Na+ channels predominantly occur in smaller sensory neurons, their blockade might underlie the suppression of the sensation of pain. Different sensitivities and varying proportions of TTXr and TTXs Na+ channels could explain the known differential block in spinal anesthesia. We suggest that the frequency reduction at low local anesthetic concentrations may explain the phenomenon of paresthesia where sensory information are suppressed gradually during spinal anesthesia.


2001 ◽  
Vol 1 ◽  
pp. 20-20
Author(s):  
K. Messlinger

The mammalian dura mater encephali is richly supplied by trigeminal nerve fibers, a considerable proportion of which contains calcitonin gene-related peptide (CGRP). As plasma levels of CGRP are increased in some forms of headaches, the question is in which way CGRP is involved in nociceptive mechanisms within the peripheral and the central trigeminovascular system.


1978 ◽  
Vol 234 (3) ◽  
pp. H223-H229
Author(s):  
S. M. Barman ◽  
R. D. Wurster

With the use of computer-aided techniques, the interaction of descending spinal sympathetic pathways and afferent nerve fibers (cervical dorsal roots and tibial nerve) in regulation of thoracic (T2) preganglionic nerve activity was investigated in anesthetized, vagotomized, and paralyzed cats. High-frequency activation of a sympathoinhibitory pathway (ventrolateral funiculus) depressed the evoked discharges in the T2 preganglionic nerve elicited by stimulation of a sympathoexcitatory pathway (dorsolateral funiculus) and the spinal component of the somatosympathetic reflex. Submaximal evoked responses were also inhibited through baroreceptor reflex activation (blood pressure elevations up to 225 mmHg). Facilitation of the spinal component of the somatosympathetic reflex occurred during stimulation of the excitatory pathway. Carotid occlusion (baroreceptor inactivation) facilitated the submaximal evoked discharges from stimulation of the descending excitatory pathway. These data support the contention that sympathetic nerve activity can be modified by the integration of excitatory and inhibitory impulses at the spinal level.


Sign in / Sign up

Export Citation Format

Share Document