Effects of Capsaicin Treatment on Nociception and Structure of Trigeminal Nerve Fibers in Adult Rats

Author(s):  
Akiko Kato ◽  
Megumi Nakamura ◽  
Seishi Echigo ◽  
Yasuyuki Sasano
2019 ◽  
Vol 20 (6) ◽  
pp. 1318 ◽  
Author(s):  
Alexandra Kupke ◽  
Sabrina Becker ◽  
Konstantin Wewetzer ◽  
Barbara Ahlemeyer ◽  
Markus Eickmann ◽  
...  

Mammalian Bornavirus (BoDV-1) typically causes a fatal neurologic disorder in horses and sheep, and was recently shown to cause fatal encephalitis in humans with and without transplant reception. It has been suggested that BoDV-1 enters the central nervous system (CNS) via the olfactory pathway. However, (I) susceptible cell types that replicate the virus for successful spread, and (II) the role of olfactory ensheathing cells (OECs), remained unclear. To address this, we studied the intranasal infection of adult rats with BoDV-1 in vivo and in vitro, using olfactory mucosal (OM) cell cultures and the cultures of purified OECs. Strikingly, in vitro and in vivo, viral antigen and mRNA were present from four days post infection (dpi) onwards in the olfactory receptor neurons (ORNs), but also in all other cell types of the OM, and constantly in the OECs. In contrast, in vivo, BoDV-1 genomic RNA was only detectable in adult and juvenile ORNs, nerve fibers, and in OECs from 7 dpi on. In vitro, the rate of infection of OECs was significantly higher than that of the OM cells, pointing to a crucial role of OECs for infection via the olfactory pathway. Thus, this study provides important insights into the transmission of neurotropic viral infections with a zoonotic potential.


2001 ◽  
Vol 1 ◽  
pp. 20-20
Author(s):  
K. Messlinger

The mammalian dura mater encephali is richly supplied by trigeminal nerve fibers, a considerable proportion of which contains calcitonin gene-related peptide (CGRP). As plasma levels of CGRP are increased in some forms of headaches, the question is in which way CGRP is involved in nociceptive mechanisms within the peripheral and the central trigeminovascular system.


1986 ◽  
Vol 379 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Sadao Kiyohara ◽  
Hiroshi Houman ◽  
Satoru Yamashita ◽  
John Caprio ◽  
Takayuki Marui

2007 ◽  
Vol 116 (8) ◽  
pp. 623-630 ◽  
Author(s):  
Jonas Hydman ◽  
Sten Remahl ◽  
Gunnar Björck ◽  
Mikael Svensson ◽  
Per Mattsson

Objectives: Injury of the recurrent laryngeal nerve (RLN) is associated with a high degree of neuronal survival, but leads to various levels of vocal fold motion impairment or laryngeal synkinesis, which has been attributed to misdirected reinnervation of the target muscles in the larynx or aberrant, competing reinnervation from adjacent nerve fibers. The aim of the present study was to evaluate the impact of the regeneration-promoting agent nimodipine on reinnervation and neuromuscular function following RLN crush injury. Methods: Sixty adult rats were randomized into nimodipine-treated or untreated groups and then underwent RLN crush injury. Reinnervation of the posterior cricoarytenoid muscle (PCA) was assessed by electrophysiological examination, retrograde tracing of lower motor neurons before and after injury, and quantification of neuromuscular junctions in the PCA muscle. Results: At 6 weeks after injury, the nimodipine-treated animals showed significantly enhanced neuromuscular function and also demonstrated a higher number of motor neurons in the brain stem that had reinnervated the PCA, compared to the untreated animals. The somatotopic organization of ambiguus motor neurons innervating the larynx was similar before injury and after reinnervation. Conclusions: Nimodipine improves regeneration and neuromuscular function following RLN injury in the adult rat, and could be of use in future strategies following RLN injury.


1997 ◽  
Vol 273 (2) ◽  
pp. E328-E335 ◽  
Author(s):  
A. E. Morgan ◽  
C. H. Lang

This study investigated the role that sensory nerves play in mediating the hormone and glucose metabolic response to endotoxin [lipopolysaccharide (LPS)]. Adult rats were pretreated subcutaneously with capsaicin to selectively destroy primary sensory afferent nerve fibers. Ten days later, [3-3H]glucose was infused intravenously to assess whole body glucose flux before and after the intravenous injection of Escherichia coli LPS (100 micrograms/100 g body wt). Control animals responded to LPS with characteristic increases in the plasma concentration of glucose (91%) and lactate (threefold) and elevations in the rates of glucose appearance and disappearance (77%). In capsaicin-treated rats, the maximal LPS-induced increase in these parameters was attenuated by 50-60%. In addition, these animals were hypoglycemic at the conclusion of the experiment. Control animals demonstrated early and sustained elevations in circulating levels of corticosterone, glucagon, and catecholamines. In contrast, the early LPS-induced elevation in epinephrine and norepinephrine, and to a lesser extent glucagon, was completely absent or greatly impaired by capsaicin pretreatment. In a separate study, the epinephrine-induced increase in glucose flux was blunted by 75% in capsaicin-treated rats. These data indicate that sensory afferent neurons play a critical role in the early secretory response of glucagon and catecholamines, the maintenance of tissue catecholamine responsiveness, and the stimulation of glucose production after LPS.


2005 ◽  
Vol 94 (4) ◽  
pp. 2630-2643 ◽  
Author(s):  
Caroly Shumway ◽  
Josée Morissette ◽  
James M. Bower

Our previous studies showed that fractured tactile cerebellar maps in rats reorganize after deafferentation during development and in adulthood while maintaining a fractured somatotopy. Several months after deafferentation of the infraorbital branch of the trigeminal nerve, the missing upper lip innervation is replaced in the tactile maps in the granule cell layer of crus IIa. The predominant input into the denervated area is always the upper incisor representation. This study examined whether this reorganization was caused by mechanisms intrinsic to the cerebellum or extrinsic, i.e., occurring in somatosensory structures afferent to the cerebellum. We first compared normal and deafferented maps and found that the expansion of the upper incisor is not caused by a preexisting bias in the strength or abundance of upper incisor input in normal animals. We then mapped tactile representations before and immediately after denervation. We found that the pattern of reorganization observed in the cerebellum several months later is not caused by unmasking of a silent or weaker upper incisor representation. Both results indicate that the reorganization is not a result of subsequent growth or sprouting mechanism within the cerebellum itself. Finally, we compared postlesion maps in the cerebellum and the somatosensory cortex. We found that the upper incisor representation significantly expands in both regions and that this expansion is correlated, suggesting that reorganization in the cerebellum is a passive consequence of reorganization in afferent cerebellar pathways. This result has important developmental and functional implications.


2003 ◽  
Vol 71 (4) ◽  
pp. 393-398 ◽  
Author(s):  
Feriha Ercan ◽  
Şule Çetinel ◽  
Nuray Erin ◽  
Hakan Aydin ◽  
Canan Hürdağ ◽  
...  
Keyword(s):  

1996 ◽  
Vol 16 (6) ◽  
pp. 1319-1324 ◽  
Author(s):  
Joerg R. Weber ◽  
Klemens Angstwurm ◽  
Geoffrey M. Bove ◽  
Wolf Bürger ◽  
Karl M. Einhäupl ◽  
...  

We investigated whether trigeminal nerve fibers contribute to enhanced regional cerebral blood flow (rCBF) in a rat model of experimental bacterial meningitis. rCBF was measured continuously for 6 h by laser Doppler flowmetry through thinned bone over the frontal cortex. Meningitis was induced with pneumococcal cell wall components and confirmed by a significant increase of (a) leukocytes within the cerebrospinal fluid, (b) brain water content, (c) intracranial pressure and (d) rCBF. The increase of rCBF was significantly attenuated ( p < 0.05) at 3, 4, 5, and 6 h in animals after a chronic (200 ± 21% versus 138 ± 13% at 6 h on the intact and denervated sides, respectively) but not after an acute section of the nasociliary branch of the trigeminal nerve. We conclude that elevations in blood flow during the early phase of bacterial meningitis are mediated in part by the trigeminal nerve, probably by local perivascular release of neuropeptides from afferent axons innervating the meninges.


Sign in / Sign up

Export Citation Format

Share Document