scholarly journals Single-step isolation of extracellular vesicles by size-exclusion chromatography

2014 ◽  
Vol 3 (1) ◽  
pp. 23430 ◽  
Author(s):  
Anita N. Böing ◽  
Edwin van der Pol ◽  
Anita E. Grootemaat ◽  
Frank A. W. Coumans ◽  
Auguste Sturk ◽  
...  
2020 ◽  
Author(s):  
Rui Wei ◽  
Libo Zhao ◽  
Guanyi Kong ◽  
Xiang Liu ◽  
Shengtao Zhu ◽  
...  

Abstract Background: Circulating small extracellular vesicles (sEVs) and its associated proteins are of great interest in the early detection of many diseases. However, there is no gold standard for plasma sEVs isolation, especially for proteomic profiling which could be largely affected by contamination such as lipoproteins. Previous studies suggested combinations of different sEVs isolation methods could improve the purity of the isolated fractions. Nevertheless, there is no systematic evaluation of size-exclusion chromatography (SEC), ultracentrifugation (UC) and their combination in a proteomic perspective. Results: Here we exhibited that SEC+UC showed comparable recovery of sEVs with higher purity in contrast to single-step UC or SEC isolation. In our proteomic analysis, there are 992 protein species identified in the sEVs fractions isolated by SEC+UC, much more than the sEVs fractions isolated by UC (453) or SEC (682) alone. As compared to Vesiclepedia and Exocarta databases, SEC+UC kept 584 previously identified sEV-associated proteins and 360 other proteins. Furthermore, detailed analysis suggested that sEV-associated proteins, such as CD9, CD81 and ITGB1, showed the better protein rank in SEC+UC group than UC group and SEC group. Lipoproteins, the most common contamination in sEVs proteomic analysis, along with other free-floating proteins in the plasma, were largely removed in SEC+UC. Conclusions: We suggested that combining SEC with UC could significantly improve the performance of mass-spectrum (MS)-based proteomic profiling in analyzing plasma-derived sEVs.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jik-Han Jung ◽  
Woojin Back ◽  
Junyong Yoon ◽  
Hyeonjeong Han ◽  
Ka-Won Kang ◽  
...  

AbstractIsolation of pure extracellular vesicles (EVs), especially from blood, has been a major challenge in the field of EV research. The presence of lipoproteins and soluble proteins often hinders the isolation of high purity EVs upon utilization of conventional separation methods. To circumvent such problems, we designed a single-step dual size-exclusion chromatography (dSEC) column for effective isolation of highly pure EVs from bone marrow derived human plasma. With an aim to select appropriate column design parameters, we analyzed the physiochemical properties of the major substances in bone marrow derived plasma, which include EVs, lipoproteins, and soluble proteins. Based on these findings, we devised a novel dSEC column with two different types of porous beads sequentially stacked each other for efficient separation of EVs from other contaminants. The newly developed dSEC columns exhibited better performance in isolating highly pure EVs from AML plasma in comparison to conventional isolation methods.


Small ◽  
2022 ◽  
pp. 2104470
Author(s):  
Sheng Yuan Leong ◽  
Hong Boon Ong ◽  
Hui Min Tay ◽  
Fang Kong ◽  
Megha Upadya ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ana Gámez-Valero ◽  
Marta Monguió-Tortajada ◽  
Laura Carreras-Planella ◽  
Marcel·la Franquesa ◽  
Katrin Beyer ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3156
Author(s):  
Daniel S. K. Liu ◽  
Flora M. Upton ◽  
Eleanor Rees ◽  
Christopher Limb ◽  
Long R. Jiao ◽  
...  

Cancer cells release extracellular vesicles, which are a rich target for biomarker discovery and provide a promising mechanism for liquid biopsy. Size-exclusion chromatography (SEC) is an increasingly popular technique, which has been rediscovered for the purposes of extracellular vesicle (EV) isolation and purification from diverse biofluids. A systematic review was undertaken to identify all papers that described size exclusion as their primary EV isolation method in cancer research. In all, 37 papers were identified and discussed, which showcases the breadth of applications in which EVs can be utilised, from proteomics, to RNA, and through to functionality. A range of different methods are highlighted, with Sepharose-based techniques predominating. EVs isolated using SEC are able to identify cancer cells, highlight active pathways in tumourigenesis, clinically distinguish cohorts, and remain functionally active for further experiments.


2015 ◽  
Vol 4 (1) ◽  
pp. 27369 ◽  
Author(s):  
Inés Lozano-Ramos ◽  
Ioana Bancu ◽  
Anna Oliveira-Tercero ◽  
María Pilar Armengol ◽  
Armando Menezes-Neto ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document