scholarly journals Lagrangian analysis of sea-ice dynamics in the Arctic Ocean

2016 ◽  
Vol 35 (1) ◽  
pp. 30778 ◽  
Author(s):  
Sándor Szanyi ◽  
Jennifer V. Lukovich ◽  
David G. Barber
2021 ◽  
Vol 126 (10) ◽  
Author(s):  
Georgia M. Hole ◽  
Thomas Rawson ◽  
Wesley R. Farnsworth ◽  
Anders Schomacker ◽  
Ólafur Ingólfsson ◽  
...  

2011 ◽  
Vol 7 (1) ◽  
pp. 463-483 ◽  
Author(s):  
N. Fischer ◽  
J. H. Jungclaus

Abstract. Changes in the Earth's orbit lead to changes in the seasonal and meridional distribution of insolation. We quantify the influence of orbitally induced changes on the seasonal temperature cycle in a transient simulation of the last 6000 years – from the mid-Holocene to today – using a coupled atmosphere-ocean general circulation model (ECHAM5/MPI-OM) including a land surface model (JSBACH). The seasonal temperature cycle responds directly to the insolation changes almost everywhere. In the Northern Hemisphere, its amplitude decreases according to an increase in winter insolation and a decrease in summer insolation. In the Southern Hemisphere, the opposite is true. Over the Arctic Ocean, however, decreasing summer insolation leads to an increase of sea-ice cover. The insulating effect of sea ice between the ocean and the atmosphere favors more continental conditions over the Arctic Ocean in winter, resulting in strongly decreasing temperatures. Consequently, there are two competing effects: the direct response to insolation changes and a sea-ice dynamics feedback. The sea-ice feedback is stronger, and thus an increase in the amplitude of the seasonal cycle over the Arctic Ocean occurs. This increase is strongest over the Barents Shelf and influences the temperature response over northern Europe. We compare our modelled seasonal temperatures over Europe to paleo reconstructions. We find better agreements in winter temperatures than in summer temperatures and better agreements in northern Europe than in southern Europe, since the model does not reproduce the southern European Holocene summer cooling inferred from the paleo data. The temperature reconstructions for northern Europe support the notion of the influence of the sea-ice effect on the evolution of the seasonal temperature cycle.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Juan Pablo Corella ◽  
Niccolo Maffezzoli ◽  
Andrea Spolaor ◽  
Paul Vallelonga ◽  
Carlos A. Cuevas ◽  
...  

AbstractIodine has a significant impact on promoting the formation of new ultrafine aerosol particles and accelerating tropospheric ozone loss, thereby affecting radiative forcing and climate. Therefore, understanding the long-term natural evolution of iodine, and its coupling with climate variability, is key to adequately assess its effect on climate on centennial to millennial timescales. Here, using two Greenland ice cores (NEEM and RECAP), we report the Arctic iodine variability during the last 127,000 years. We find the highest and lowest iodine levels recorded during interglacial and glacial periods, respectively, modulated by ocean bioproductivity and sea ice dynamics. Our sub-decadal resolution measurements reveal that high frequency iodine emission variability occurred in pace with Dansgaard/Oeschger events, highlighting the rapid Arctic ocean-ice-atmosphere iodine exchange response to abrupt climate changes. Finally, we discuss if iodine levels during past warmer-than-present climate phases can serve as analogues of future scenarios under an expected ice-free Arctic Ocean. We argue that the combination of natural biogenic ocean iodine release (boosted by ongoing Arctic warming and sea ice retreat) and anthropogenic ozone-induced iodine emissions may lead to a near future scenario with the highest iodine levels of the last 127,000 years.


2021 ◽  
Author(s):  
Maxim N. Kaurkin ◽  
Leonid Y. Kalnitski ◽  
Konstantin V. Ushakov ◽  
Rashit A. Ibrayev

Abstract. The Arctic Ocean plays an important role in the global climate system, where sea ice regulates the exchange of heat, moisture and momentum between the atmosphere and the ocean. A comprehensive analysis and forecast of the Arctic ocean system requires a detailed numerical ocean and sea ice coupled model supplemented by assimilation of observational data at appropriate time scales. A new operative ocean – ice state forecast system was developed and implemented. It consists of the INMIO4.1 ocean general circulation model and the CICE5.1 sea ice dynamics and thermodynamics model with common spatial resolution of 0.25°. For the exchange of boundary conditions and service actions (data storage, time synchronization, etc.), the coupled model uses the Compact Modeling Framework (CMF3.0). Data assimilation is implemented in the form of the Data Assimilation Service (DAS) based on the Ensemble Optimal Interpolation (EnOI) method. This technique allows to simultaneously correct the ocean (temperature, salinity, surface level) and ice (concentration) model fields in the DAS service, so they are coordinated not only through the exchange of boundary conditions, but already at the stage of data assimilation (i.e. strong coupling data assimilation). Experiments with the INMIO – CICE model show that the developed algorithm provides a significant improvement in the accuracy of forecasting the state of the ice field in the Arctic Ocean.


2015 ◽  
Vol 56 (69) ◽  
pp. 445-450
Author(s):  
Jennifer A. King ◽  
Grant R. Bigg ◽  
Richard Hall

AbstractIn this paper we investigate the effect on sea-ice movement of changes in the synoptic atmospheric conditions in late boreal summer 2010. Our study area is the western Fram Strait, a crucial passage for the transport of ice out of the Arctic basin. Ice dynamics here affect the movement of ice in the East Greenland Current, the transpolar drift and ice extent in the Arctic Ocean. In contrast to other times of the year, when the Fram Strait wind field is characterized by strong, persistent northerlies, we show that the weaker, more variable winds typical during late summer for the Fram Strait can slow movement of ice floes out of the area, thus slowing the export of ice from the Arctic Ocean at the end of summer, a time crucial for ice export. The Arctic Ocean could lose even more of the ice that survives the summer if this was not the case. This would leave the Arctic Ocean in an even more vulnerable position with regard to the amount of multi-year ice remaining the following summer.


2008 ◽  
Vol 21 (5) ◽  
pp. 866-882 ◽  
Author(s):  
Irina V. Gorodetskaya ◽  
L-Bruno Tremblay ◽  
Beate Liepert ◽  
Mark A. Cane ◽  
Richard I. Cullather

Abstract The impact of Arctic sea ice concentrations, surface albedo, cloud fraction, and cloud ice and liquid water paths on the surface shortwave (SW) radiation budget is analyzed in the twentieth-century simulations of three coupled models participating in the Intergovernmental Panel on Climate Change Fourth Assessment Report. The models are the Goddard Institute for Space Studies Model E-R (GISS-ER), the Met Office Third Hadley Centre Coupled Ocean–Atmosphere GCM (UKMO HadCM3), and the National Center for Atmosphere Research Community Climate System Model, version 3 (NCAR CCSM3). In agreement with observations, the models all have high Arctic mean cloud fractions in summer; however, large differences are found in the cloud ice and liquid water contents. The simulated Arctic clouds of CCSM3 have the highest liquid water content, greatly exceeding the values observed during the Surface Heat Budget of the Arctic Ocean (SHEBA) campaign. Both GISS-ER and HadCM3 lack liquid water and have excessive ice amounts in Arctic clouds compared to SHEBA observations. In CCSM3, the high surface albedo and strong cloud SW radiative forcing both significantly decrease the amount of SW radiation absorbed by the Arctic Ocean surface during the summer. In the GISS-ER and HadCM3 models, the surface and cloud effects compensate one another: GISS-ER has both a higher summer surface albedo and a larger surface incoming SW flux when compared to HadCM3. Because of the differences in the models’ cloud and surface properties, the Arctic Ocean surface gains about 20% and 40% more solar energy during the melt period in the GISS-ER and HadCM3 models, respectively, compared to CCSM3. In twenty-first-century climate runs, discrepancies in the surface net SW flux partly explain the range in the models’ sea ice area changes. Substantial decrease in sea ice area simulated during the twenty-first century in CCSM3 is associated with a large drop in surface albedo that is only partly compensated by increased cloud SW forcing. In this model, an initially high cloud liquid water content reduces the effect of the increase in cloud fraction and cloud liquid water on the cloud optical thickness, limiting the ability of clouds to compensate for the large surface albedo decrease. In HadCM3 and GISS-ER, the compensation of the surface albedo and cloud SW forcing results in negligible changes in the net SW flux and is one of the factors explaining moderate future sea ice area trends. Thus, model representations of cloud properties for today’s climate determine the ability of clouds to compensate for the effect of surface albedo decrease on the future shortwave radiative budget of the Arctic Ocean and, as a consequence, the sea ice mass balance.


Sign in / Sign up

Export Citation Format

Share Document