scholarly journals An Additive Sparse Logistic Regularization Method for Cancer Classification in Microarray Data

Now a day’s cancer has become a deathly disease due to the abnormal growth of the cell. Many researchers are working in this area for the early prediction of cancer. For the proper classification of cancer data, demands for the identification of proper set of genes by analyzing the genomic data. Most of the researchers used microarrays to identify the cancerous genomes. However, such kind of data is high dimensional where number of genes are more compared to samples. Also the data consists of many irrelevant features and noisy data. The classification technique deal with such kind of data influences the performance of algorithm. A popular classification algorithm (i.e., Logistic Regression) is considered in this work for gene classification. Regularization techniques like Lasso with L1 penalty, Ridge with L2 penalty, and hybrid Lasso with L1/2+2 penalty used to minimize irrelevant features and avoid overfitting. However, these methods are of sparse parametric and limits to linear data. Also methods have not produced promising performance when applied to high dimensional genome data. For solving these problems, this paper presents an Additive Sparse Logistic Regression with Additive Regularization (ASLR) method to discriminate linear and non-linear variables in gene classification. The results depicted that the proposed method proved to be the best-regularized method for classifying microarray data compared to standard methods

Author(s):  
Zhenqiu Liu ◽  
Feng Jiang ◽  
Guoliang Tian ◽  
Suna Wang ◽  
Fumiaki Sato ◽  
...  

In this paper, we propose a novel method for sparse logistic regression with non-convex regularization Lp (p <1). Based on smooth approximation, we develop several fast algorithms for learning the classifier that is applicable to high dimensional dataset such as gene expression. To the best of our knowledge, these are the first algorithms to perform sparse logistic regression with an Lp and elastic net (Le) penalty. The regularization parameters are decided through maximizing the area under the ROC curve (AUC) of the test data. Experimental results on methylation and microarray data attest the accuracy, sparsity, and efficiency of the proposed algorithms. Biomarkers identified with our methods are compared with that in the literature. Our computational results show that Lp Logistic regression (p <1) outperforms the L1 logistic regression and SCAD SVM. Software is available upon request from the first author.


2018 ◽  
Vol 8 (9) ◽  
pp. 1569 ◽  
Author(s):  
Shengbing Wu ◽  
Hongkun Jiang ◽  
Haiwei Shen ◽  
Ziyi Yang

In recent years, gene selection for cancer classification based on the expression of a small number of gene biomarkers has been the subject of much research in genetics and molecular biology. The successful identification of gene biomarkers will help in the classification of different types of cancer and improve the prediction accuracy. Recently, regularized logistic regression using the L 1 regularization has been successfully applied in high-dimensional cancer classification to tackle both the estimation of gene coefficients and the simultaneous performance of gene selection. However, the L 1 has a biased gene selection and dose not have the oracle property. To address these problems, we investigate L 1 / 2 regularized logistic regression for gene selection in cancer classification. Experimental results on three DNA microarray datasets demonstrate that our proposed method outperforms other commonly used sparse methods ( L 1 and L E N ) in terms of classification performance.


2018 ◽  
Vol 45 (9) ◽  
pp. 4112-4124 ◽  
Author(s):  
Hoda Nemat ◽  
Hamid Fehri ◽  
Nasrin Ahmadinejad ◽  
Alejandro F. Frangi ◽  
Ali Gooya

2016 ◽  
Vol 20 (s1) ◽  
pp. S53-S67 ◽  
Author(s):  
Ricardo Ocampo-Vega ◽  
Gildardo Sanchez-Ante ◽  
Marco A. de Luna ◽  
Roberto Vega ◽  
Luis E. Falcón-Morales ◽  
...  

2013 ◽  
Vol 29 (7) ◽  
pp. 870-877 ◽  
Author(s):  
Jakramate Bootkrajang ◽  
Ata Kabán

Sign in / Sign up

Export Citation Format

Share Document