Pulps. Determination of water retention value (WRV)

2015 ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yan Gao ◽  
Kai Chang ◽  
Xuguang Xing ◽  
Jiaping Liang ◽  
Nian He ◽  
...  

PurposeTraditional laboratory measurements of soil water diffusivity (D) and soil water retention curve (SWRC) are always time-consuming and labor-intensive. Therefore, this paper aims to present a simple and robust test method for determining D and SWRC without reducing accuracy.Design/methodology/approachIn this study, a D model of unsaturated soil was established based on Gardner–Russo model and then a combination of Gardner–Russo model with one-dimensional horizontal absorption method to obtain n and a parameters of Gardner–Russo model. One-dimensional horizontal absorption experiments on loam, silt loam and sandy clay loam were conducted to obtain the relationships between measured infiltration rate and cumulative infiltration with wetting front distance. Based on the obtained relationships, the measured infiltration data from the one-dimensional horizontal absorption tests were used to calculate n and a parameters and further constructing D and SWRC.FindingsBoth the calculated D and SWRC inversed from the infiltration data were in good agreement with the measured ones that obtained from the traditional horizontal absorption method and the centrifuge method, respectively. Error analysis indicated that only the infiltration data are enough to reliably synchronously determine D and SWRC.Originality/valueA simple and robust method is proposed for synchronous determination of soil water diffusivity and water retention curve.


TAPPI Journal ◽  
2020 ◽  
Vol 19 (5) ◽  
pp. 239-246
Author(s):  
XIAONING SHEN ◽  
BO LI ◽  
WENXUAN MO ◽  
XIN-SHENG CHAI

This paper presents data on the effects of operational parameters (number of revolutions, linear pressure, and gap) of the PFI refiner on the swellability of recycled fiber, which was characterized by water retention value (WRV). The results showed that the increase of recycled fiber’s WRV was proportional to the number of revolutions and the linear pressure, but inversely proportional to the gap. The mathematical relation between these parameters and the fiber WRV could be described by an empirical model for gaps greater than 0.1 mm. Scanning electron microscopic images of fiber morphology showed that the basic framework of fibers could be maintained with the gap greater than 0.1 mm, but was destroyed with smaller gaps. This model provides a technical reference for quantitative control of refining treatment and an effective method for improving recycled fiber quality.


2016 ◽  
Vol 30 (1) ◽  
pp. 141-149 ◽  
Author(s):  
Tomasz Zubala ◽  
Magdalena Patro

Abstract The growing water deficit and the increased demand for water, as well as economic problems and inadequate spatial planning in many regions indicate a necessity of developing more effective rules of programming and realisation of works concerning the water management in small catchments. The paper presents a sample analysis of the possibilities of increasing water retention in the agricultural loess catchments with periodic streams. The scope of the study included the determination of physical parameters of selected sub-catchments (geometry, soil cover, land use, etc.) and of the sources of threat to water resources, resulting from construction and geomorphological conditions. Pre-design assumptions of dammings were developed, taking into account anti-erosion protective measures, and treatments increasing the landscape retention of water were proposed. Creating surface retention objects should be an important source of water in simplified agroecosystems, especially in regions, where productivity to a great extent depends on natural weather conditions. Proper management of the fourth-order loess basin of the Ciemięga River (area of about 150 km2, the presence of 50 lateral valleys) could give a temporary reservoir retention reaching 500 thousand m3. Farmers should be encouraged to seek “own water sources” (including the accumulation of water within wasteland), using appropriate economic instruments (tax reliefs for the documented volume of retained water, e.g. in small retention reservoirs).


2018 ◽  
Vol 2 ◽  
pp. 13-21
Author(s):  
Ryszard Oleszczuk ◽  
◽  
Ewelina Zając ◽  
Edyta Hewelke ◽  
Karolina Wawer ◽  
...  

Holzforschung ◽  
2010 ◽  
Vol 64 (2) ◽  
Author(s):  
Iiro Pulkkinen ◽  
Juha Fiskari ◽  
Ville Alopaeus

Abstract The activation parameter developed is based on the fiber wall thickness distribution, fiber curl distribution, and water retention value of the unrefined fibers. The mechanical properties of paper that contain chemical pulp depend, among other things, on the free fiber segment activation between fiber-fiber crossings that is created during drying. Experimental data revealed that the degree of fiber swelling is responsible together with the fiber shape factor (curl) and fiber wall thickness for the extent of fiber network activation. The amount of bonding between fibers also affects fiber segment activation. Based on the experimental data, it was deduced that interfiber bonding ability of fibers, characterized as the water retention value, was mainly responsible for the development of handsheet density. Tensile index development was more affected by the morphology of fibers, which was the main determinant for high activation potential of fibers. Factor analysis was used to identify the main causes of variation for a refining data set of 20 Eucalyptus grandis samples. Three independent descriptors were found to be responsible for the majority of the variation: the bonding and activation factor, the factor of microcompressions, and the factor of fiber wall thickness and fiber curl. The activation parameter developed in this study can be used to determine the effect of fiber segment activation and inter-fiber bonding on the inplane mechanical properties of paper.


Sign in / Sign up

Export Citation Format

Share Document