Railway applications. Track. Survey of track geometry quality

2014 ◽  
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3609
Author(s):  
Mykola Sysyn ◽  
Michal Przybylowicz ◽  
Olga Nabochenko ◽  
Lei Kou

The ballasted track superstructure is characterized by a relative quick deterioration of track geometry due to ballast settlements and the accumulation of sleeper voids. The track zones with the sleeper voids differ from the geometrical irregularities with increased dynamic loading, high vibration, and unfavorable ballast-bed and sleeper contact conditions. This causes the accelerated growth of the inhomogeneous settlements, resulting in maintenance-expensive local instabilities that influence transportation reliability and availability. The recent identification and evaluation of the sleeper support conditions using track-side and on-board monitoring methods can help planning prevention activities to avoid or delay the development of local instabilities such as ballast breakdown, white spots, subgrade defects, etc. The paper presents theoretical and experimental studies that are directed at the development of the methods for sleeper support identification. The distinctive features of the dynamic behavior in the void zone compared to the equivalent geometrical irregularity are identified by numeric simulation using a three-beam dynamic model, taking into account superstructure and rolling stock dynamic interaction. The spectral features in time domain in scalograms and scattergrams are analyzed. Additionally, the theoretical research enabled to determine the similarities and differences of the dynamic interaction from the viewpoint of track-side and on-board measurements. The method of experimental investigation is presented by multipoint track-side measurements of rail-dynamic displacements using high-speed video records and digital imaging correlation (DIC) methods. The method is used to collect the statistical information from different-extent voided zones and the corresponding reference zones without voids. The applied machine learning methods enable the exact recent void identification using the wavelet scattering feature extraction from track-side measurements. A case study of the method application for an on-board measurement shows the moderate results of the recent void identification as well as the potential ways of its improvement.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 56
Author(s):  
Ashutosh Sharma ◽  
Byungmin Ahn

Metallic and alloyed coatings are used widely in several decorative and technology-based applications. In this work, we selected Sn coatings plated on Cu substrates for joining applications. We employed two different plating baths for the fabrication of Sn and Ni coatings: acidic stannous sulfate for Sn and Watts bath for Ni layer. The plating current densities were varied from 100–500 mA/cm2. Further, the wear and friction behavior of the coatings were studied using a ball-on-disc apparatus under dry sliding conditions. The impact of current density was studied on the morphology, wear, and coefficient of friction (COF) of the resultant coatings. The wear experiments were done at various loads from 2–10 N. The sliding distance was fixed to 7 m. The wear loss was quantified in terms of the volume of the track geometry (width and depth of the tracks). The results indicate that current density has an important role in tailoring the composition and morphology of coatings, which affects the wear properties. At higher loads (8–10 N), Sn coatings on Ni/Cu had higher volume loss with a stable COF due to a mixed adhesive and oxidative type of wear mechanism.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 683
Author(s):  
José L. Escalona ◽  
Pedro Urda ◽  
Sergio Muñoz

This paper describes the kinematics used for the calculation of track geometric irregularities of a new Track Geometry Measuring System (TGMS) to be installed in railway vehicles. The TGMS includes a computer for data acquisition and process, a set of sensors including an inertial measuring unit (IMU, 3D gyroscope and 3D accelerometer), two video cameras and an encoder. The kinematic description, that is borrowed from the multibody dynamics analysis of railway vehicles used in computer simulation codes, is used to calculate the relative motion between the vehicle and the track, and also for the computer vision system and its calibration. The multibody framework is thus used to find the formulas that are needed to calculate the track irregularities (gauge, cross-level, alignment and vertical profile) as a function of sensor data. The TGMS has been experimentally tested in a 1:10 scaled vehicle and track specifically designed for this investigation. The geometric irregularities of a 90 m-scale track have been measured with an alternative and accurate method and the results are compared with the results of the TGMS. Results show a good agreement between both methods of calculation of the geometric irregularities.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Peng Xu ◽  
Chuanjun Jia ◽  
Ye Li ◽  
Quanxin Sun ◽  
Rengkui Liu

As railroad infrastructure becomes older and older and rail transportation is developing towards higher speed and heavier axle, the risk to safe rail transport and the expenses for railroad maintenance are increasing. The railroad infrastructure deterioration (prediction) model is vital to reducing the risk and the expenses. A short-range track condition prediction method was developed in our previous research on railroad track deterioration analysis. It is intended to provide track maintenance managers with two or three months of track condition in advance to schedule track maintenance activities more smartly. Recent comparison analyses on track geometrical exceptions calculated from track condition measured with track geometry cars and those predicted by the method showed that the method fails to provide reliable condition for some analysis sections. This paper presented the enhancement to the method. One year of track geometry data for the Jiulong-Beijing railroad from track geometry cars was used to conduct error analyses and comparison analyses. Analysis results imply that the enhanced model is robust to make reliable predictions. Our in-process work on applying those predicted conditions for optimal track maintenance scheduling is discussed in brief as well.


ICTE 2015 ◽  
2015 ◽  
Author(s):  
Kun You ◽  
Haifeng Li ◽  
Wanqing Zhang ◽  
Sihan Yan

Sign in / Sign up

Export Citation Format

Share Document