scholarly journals EVALUATION OF THE POSSIBILITY OF USING REFTINSKAYA GRES ASH IN THE PRODUCTION OF CONTINUOUS GLASS FIBER

Author(s):  
V. Onischuk ◽  
Y. Lazarova ◽  
E. Evtushenko

The article presents the results of the evaluation of the study of the possibility of using ash and slag waste (ash) of Reftinskaya GRES as a component of the charge used in the production of continuous glass fiber of high-modulus (type E), dielectric resistant (type S) and high-strength, chemically stable basalt (type B) compositions. Since the chemical composition of ash is multicomponent and significantly differs from the compositions of raw materials traditionally used in the production of glass fiber, in order to establish the technological features of its use as a component of the charge, experimental compositions of glasses were designed to achieve their specified physical and mechanical properties, with the maximum possible content of ash in the composition of glass charges. A priori assessment showed that acceptable properties of glass for glass fiber compositions E, S and B can be obtained at the content of 36%, 68% and 64% ash in the charges, respectively, for the listed types of glass. The determination of the glass transition temperature intervals of the experimental charge compositions showed that an increase in the ash content in them increases the temperature that ensures the production of a high-quality melt. Studies of the tendency of experimental glass compositions to crystallization, which prevents the effective process of fiber formation, allowed us to determine that almost all compositions have a reduced tendency to crystallization, therefore, they can be used in the production of glass fibers of types S, E and B.

Author(s):  
P. V. Vijay ◽  
GangaRao V. S. Hota ◽  
Aneesh Bethi ◽  
Venugopal Chada ◽  
Muhammad A. M. Qureshi

About a billion wood cross-ties are in service in North America for safe and effective transfer of heavy freight or high-speed passenger train loads. These wood ties are facing long-term safety and serviceability issues related to ever increasing intensities and frequencies, and harsh field conditions. In addition to other applications, the Constructed Facilities Center, West Virginia University (CFC-WVU) has been investigating the use of recycled polymer composite railroad (RR) ties with discarded wood or rubber core to safely alleviate many of the problems posed by creosote treated timber ties. In this research, mechanical property characterization of recycled thermoplastics was carried out prior to manufacturing RR ties with continuous glass fiber reinforced (GFRP) polymer composite shell with recycled polymer, and wood/FRP (fiber reinforced polymer) core. GFRP Composite ties manufactured with thermoplastics and continuous glass fiber/fabric have exhibited high strength/stiffness unlike plastic ties with chopped fibers. Local cracking from spikes was found to be negligible. Half- and full-scale RR ties were subjected to static loads of 80 kips and fatigue loads up to 12.5 million cycles with a strain range of 750 micro strains (με, i.e., 750×10−6) in FRP composite shell. Spike pull-out tests were conducted on full-scale RR tie specimens. Results showed high strength/stiffness of these ties under static loads and also excellent strength retention under millions of fatigue cycles. Field installed ties exhibited maximum strain of 1070 micro-strains under actual locomotive loads moving at 15 mph.


2019 ◽  
Vol 95 (6) ◽  
pp. 548-551 ◽  
Author(s):  
G. F. Mukhammadiyeva ◽  
Liliya K. Karimova ◽  
N. A. Beigul ◽  
A. B. Bakirov ◽  
E. T. Valeeva ◽  
...  

With the use of a one-stage method we have carried out hygienic studies of the air of work area of the production of continuous glass fiber. There was revealed the emission of epichlorohydrin, formaldehyde, ethane acid, hydrochloride, spray of mineral petroleum oil, fine glass fiber dust in air of the work area. There was established the combined effect of hazardous substances of unidirectional action with the summation effect on the body. Hazardous substances containing in glass fiber sizers in combination with dust of glass fiber against the background of microtraumatization of the hand skin contribute to the development of occupational skin neoplasms. The studies became the basis of the development of preventive measures aimed at the reduction of risks of the impact of the chemical factor impact on workers.


2003 ◽  
Vol 24 (4) ◽  
pp. 499-511 ◽  
Author(s):  
David Trudel-Boucher ◽  
Martin N. Bureau ◽  
Johanne Denault ◽  
Bo Fisa

2017 ◽  
Vol 25 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Jiuqiang Song ◽  
Yan Qin ◽  
Jia Chen ◽  
Siwen Qin

In this paper, a continuous glass fiber-reinforced polypropylene prepreg was prepared by fiber treatment with a silane coupling agent and MAH-g-PP resin. Continuous glass fiber-reinforced polypropylene sheets were made from prepreg and PP mats by hot-pressing; they displayed exceptional performance. This paper studies the effects of maleic anhydride grafting on the polypropylene crystallinity and MAH-g-PP content in the prepreg, and the mechanical properties of the composites. The results showed that modifying PP with maleic anhydride decreased the tacticity of the polypropylene molecular chain, which reduced the crystallinity and melting point. An excellent interface formed between the polypropylene and fiber after the glass fiber was treated with a silane coupling agent and MAH-g-PP resin. The mechanical properties of the polymer materials displayed more favorable properties as MAH-g-PP content increased; the ideal MAH-g-PP content was 50%.


Sign in / Sign up

Export Citation Format

Share Document