À propos d'essais de croisements entre Triticum timopheevi et Triticum turgidum compositum

1955 ◽  
Vol 24 (10) ◽  
pp. 235-241
Author(s):  
Claude-Charles Mathon ◽  
M. Stroun
1983 ◽  
Vol 25 (6) ◽  
pp. 651-661 ◽  
Author(s):  
U. Kushnir ◽  
G. M. Halloran

A spontaneous somatic mutant with Triticum timopheevi Zhuk. plant morphology was found in late tillers of a Triticum turgidum L. var. dicoccoides (Bowden) plant. Hybrids of the timopheevi-like mutant with T. turgidum L. var. dicocooides (Bowden), T. timopheevi Zhuk., and T. araraticum Jakubz. exhibited irregular pairing at meiosis and sterility, almost normal pairing and fertility, and relatively high pairing and sterility, respectively. This evidence plus that of karyotype changes in the somatic mutant indicated that it was differentiated from T. turgidum dicoccoides through chromosome interchanges. This mutation, believed to arise through chromosome rearrangement, is discussed in relation to the origin of the G genome of T. timopheevi.


1970 ◽  
Vol 12 (2) ◽  
pp. 347-355 ◽  
Author(s):  
E. B. Wagenaar

Cytogenetic analysis of three backcross generations of the hybrid Triticum turgidum × T. timopheevi (2n = 28) showed segregation of meiotic behaviour in each successive generation. The segregation was continuous and was possibly under control of polygenes. These results indicate that the meiotic irregularities commonly found in F1 hybrids between T. turgidum and T. timopheevi are primarly genetically induced.


Author(s):  
Belgin Göçmen Taşkın ◽  
Özlem Özbek ◽  
Sibel Keskin Şan ◽  
Miloudi Mikael Nachit ◽  
Zeki Kaya

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 633
Author(s):  
Alberto Marco Del Pino ◽  
Beatrice Falcinelli ◽  
Roberto D’Amato ◽  
Daniela Businelli ◽  
Paolo Benincasa ◽  
...  

In this work, the biological activity of emmer (Triticum turgidum L. spp. dicoccum (Schrank ex Shubler) Thell.) wheatgrass extracts obtained from grains sprouted with distilled water, or salinity (50 mM) or selenium (45 mg L−1 of Na2SeO3), was tested through an experimental biological model based on the germination and cytosolic Ca2+ homeostasis of maize pollen grains. The effects of thapsigargin (TG) and of four phenolic acids (PAs: ferulic, coumaric, salicylic and 3-HO benzoic) on maize pollen were also tested as controls. Wheatgrass extracts influenced both pollen cytosolic Ca2+ and germination. The Ca2+ agonist activity of emmer wheatgrass was transient, different from that of TG, which caused a depletion of the stored Ca2+ and a permanent alteration of Ca2+ homeostasis. The results obtained with extracts compared to those obtained with pure PAs suggest that PAs in unconjugated forms, which are known to be well represent in emmer wheatgrass, contribute to the biological activity of extracts. The extent of the biological response of emmer wheatgrass extracts was influenced by emmer sprouting conditions (i.e., distilled water, or salinity or selenium). Maize pollen treated with Se-enriched wheatgrass extracts showed a less perturbed cytosolic Ca2+ and a higher germination rate.


Genetics ◽  
1994 ◽  
Vol 137 (3) ◽  
pp. 883-889 ◽  
Author(s):  
N T Miyashita ◽  
N Mori ◽  
K Tsunewaki

Abstract Restriction map variation in two 5-6-kb chloroplast DNA regions of five diploid Aegilops species in the section Sitopsis and two wild tetraploid wheats, Triticum dicoccoides and Triticum araraticum, was investigated with a battery of four-cutter restriction enzymes. A single accession each of Triticum durum, Triticum timopheevi and Triticum aestivum was included as a reference. More than 250 restriction sites were scored, of which only seven sites were found polymorphic in Aegilops speltoides. No restriction site polymorphisms were detected in all of the other diploid and tetraploid species. In addition, six insertion/deletion polymorphisms were detected, but they were mostly unique or species-specific. Estimated nucleotide diversity was 0.0006 for A. speltoides, and 0.0000 for all the other investigated species. In A. speltoides, none of Tajima's D values was significant, indicating no clear deviation from the neutrality of molecular polymorphisms. Significant non-random association was detected for three combinations out of 10 possible pairs between polymorphic restriction sites in A. speltoides. Phylogenetic relationship among all the plastotypes (plastid genotype) suggested the diphyletic origin of T. dicoccoides and T. araraticum. A plastotype of one A. speltoides accession was identical to the major type of T. araraticum (T. timopheevi inclusively). Three of the plastotypes found in the Sitopsis species are very similar, but not identical, to that of T. dicoccoides, T. durum and T. aestivum.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 113
Author(s):  
María-Dolores Rey ◽  
Carmen Ramírez ◽  
Azahara C. Martín

Polyploidization, or whole genome duplication (WGD), has an important role in evolution and speciation. One of the biggest challenges faced by a new polyploid is meiosis, in particular, discriminating between multiple related chromosomes so that only homologs recombine to ensure regular chromosome segregation and fertility. Here, we report the production of two new hybrids formed by the genomes of species from three different genera: a hybrid between Aegilops tauschii (DD), Hordeum chilense (HchHch), and Secale cereale (RR) with the haploid genomic constitution HchDR (n = 7× = 21); and a hybrid between Triticum turgidum spp. durum (AABB), H. chilense, and S. cereale with the constitution ABHchR (n = 7× = 28). We used genomic in situ hybridization and immunolocalization of key meiotic proteins to establish the chromosome composition of the new hybrids and to study their meiotic behavior. Interestingly, there were multiple chromosome associations at metaphase I in both hybrids. A high level of crossover (CO) formation was observed in HchDR, which shows the possibility of meiotic recombination between the different genomes. We succeeded in the duplication of the ABHchR genome, and several amphiploids, AABBHchHchRR, were obtained and characterized. These results indicate that recombination between the genera of three economically important crops is possible.


Sign in / Sign up

Export Citation Format

Share Document