scholarly journals Металлогения Конгинской зоны Омолонского террейна (Северо-Восток Азии)

Author(s):  
A. N. Glukhov ◽  
◽  
V. V. Priymenko ◽  
M. I. Fomina ◽  
V. V. Akinin ◽  
...  

The article presents new data on geology, mineralogy, and geochemistry of porphyry-copper, gold-silver, and silver-polymetallic ore occurrences in the Kongin magmatic zone of the Omolon terrane and granitoids, associated with it. It has been demonstrated that petrology and the age of granitoids are similar to those in the OCVB Penzhina segment. Mineralization of the Kongin zone is very close to that of the OCVB, differing in relatively high Mo in porphyry-copper ores and prevalence of silver-polymetallic mineralization over gold-silver.

2012 ◽  
Vol 55 (2) ◽  
pp. 158-184 ◽  
Author(s):  
Farimah Ayati ◽  
Fuat Yavuz ◽  
Hooshang H. Asadi ◽  
Jeremy P. Richards ◽  
Fred Jourdan

SEG Discovery ◽  
2016 ◽  
pp. 1-20
Author(s):  
Richard H. Sillitoe ◽  
Claudio Burgoa ◽  
David R. Hopper

ABSTRACT Exploration for porphyry copper deposits beneath barren or poorly mineralized, advanced argillic lithocaps is becoming common­place; however, there have been few discoveries except in cases where the copper ± gold ± molybdenum mineralization has been partly exposed, typically as a result of partial lithocap erosion. At Valeriano, in the high Andes of northern Chile, completely concealed Miocene porphyry copper-gold mineralization was recently discovered beneath a lithocap. Here, the results of the staged drilling program that led to the discovery are summarized, with emphasis on the key geologic, alteration, and mineralization features that provided guidance. The final deep drill holes of the 16-hole program cut well-defined advanced argillic and sericitic alteration zones before entering chalcopyrite ± bornite–bearing, potassic-altered porphyry, with grades of 0.7 to 1.2% Cu equiv, at depths of ~1,000 to >1,800 m.


SEG Discovery ◽  
2013 ◽  
pp. 1-10
Author(s):  
David R. Cooke

With the publication of this collection of papers on porphyry deposits, SEG offers a signifıcant addition to its popular Compilation series. Introduced in 2007, the series brings together papers on a single theme, collected from the entire archive of Economic Geology and other SEG publications, in a searchable, digital format—on CD-ROM or, as is the case with the newest release, on a DVD. The porphyry compilation, organized by Editor David Cooke, was available at the Whistler 2013 Conference in September and can now be purchased online through the SEG bookstore (www.segweb.org/store). We include below the preface written by Cooke, which also appears on the DVD.


Minerals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 109 ◽  
Author(s):  
Germán Velásquez ◽  
Daniel Carrizo ◽  
Stefano Salvi ◽  
Iván Vela ◽  
Marcial Pablo ◽  
...  

High-resolution mineral characterization performed on mine material from a giant porphyry copper deposit shows that critical and precious metals, such as cobalt, lanthanum, gold, silver, and tellurium, are concentrated in pyrite in the form of visible micro-inclusions, invisible mineral nano-inclusions, and trace metals in the mineral lattice. Visible and invisible inclusions consist of Ag-Au-Te sulfosalt and monazite-(La) particles. Trace metal concentrations grade up to 24,000 g/t for cobalt, up to 4000 g/t for lanthanum, and up to 4 g/t for gold. Pyrite, considered a waste material, is removed from the valuable copper ore material and sent to the tailings. Thus, tailings with high contents of pyrite can represent a prime target to explore for critical metals in the porphyry copper mining operations, transforming it into a new source of supply for critical metals. We propose that high-resolution mineral characterization is the key to evolve from a quasi-single-metal (copper) operation to a multi-metals business by developing metal-selective mining. To address this challenge, we coined the Metal-Zone concept to identify zones enriched in a specific metal within a mineral deposit, instead of zones enriched in an ore mineral.


Sign in / Sign up

Export Citation Format

Share Document