Faculty Opinions recommendation of Retortamonad flagellates are closely related to diplomonads--implications for the history of mitochondrial function in eukaryote evolution.

Author(s):  
C Graham Clark
2002 ◽  
Vol 19 (5) ◽  
pp. 777-786 ◽  
Author(s):  
Jeffrey D. Silberman ◽  
Alastair G. B. Simpson ◽  
Jaroslav Kulda ◽  
Ivan Cepicka ◽  
Vladimir Hampl ◽  
...  

2020 ◽  
Author(s):  
Seungho Kang ◽  
Alexander K. Tice ◽  
Courtney W. Stairs ◽  
Daniel J. G. Lahr ◽  
Robert E. Jones ◽  
...  

AbstractIntegrins are transmembrane receptor proteins that activate signal transduction pathways upon extracellular matrix binding. The Integrin Mediated Adhesion Complex (IMAC), mediates various cell physiological process. The IMAC was thought to be an animal specific machinery until over the last decade these complexes were discovered in Obazoa, the group containing animals, fungi, and several microbial eukaryote lineages. Amoebozoa is the eukaryotic supergroup sister to Obazoa. Even though Amoebozoa represents the closest outgroup to Obazoa, little genomic-level data and attention to gene inventories has been given to the supergroup. To examine the evolutionary history of the IMAC, we examine gene inventories of deeply sampled set of 100+ Amoebozoa taxa, including new data from several taxa. From these robust data sampled from the entire breadth of known amoebozoan clades, we show the presence of an ancestral complex of integrin adhesion proteins that predate the evolution of the Amoebozoa. Our results highlight that many of these proteins appear to have evolved earlier in eukaryote evolution than previously thought. Co-option of an ancient protein complex was key to the emergence of animal type multicellularity. The role of the IMAC in a unicellular context is unknown but must also play a critical role for at least some unicellular organisms.


2021 ◽  
Vol 118 (23) ◽  
pp. e2101544118
Author(s):  
Don E. Canfield ◽  
Mark A. van Zuilen ◽  
Sami Nabhan ◽  
Christian J. Bjerrum ◽  
Shuichang Zhang ◽  
...  

Oxygen concentration defines the chemical structure of Earth's ecosystems while it also fuels the metabolism of aerobic organisms. As different aerobes have different oxygen requirements, the evolution of oxygen levels through time has likely impacted both environmental chemistry and the history of life. Understanding the relationship between atmospheric oxygen levels, the chemical environment, and life, however, is hampered by uncertainties in the history of oxygen levels. We report over 5,700 Raman analyses of organic matter from nine geological formations spanning in time from 742 to 1,729 Ma. We find that organic matter was effectively oxidized during weathering and little was recycled into marine sediments. Indeed, during this time interval, organic matter was as efficiently oxidized during weathering as it is now. From these observations, we constrain minimum atmospheric oxygen levels to between 2 to 24% of present levels from the late Paleoproterozoic Era into the Neoproterozoic Era. Indeed, our results reveal that eukaryote evolution, including early animal evolution, was not likely hindered by oxygen through this time interval. Our results also show that due to efficient organic recycling during weathering, carbon cycle dynamics can be assessed directly from the sediment carbon record.


2020 ◽  
Author(s):  
Gladys A. Shaw ◽  
Molly M. Hyer ◽  
Imogen Targett ◽  
Kimaya C. Council ◽  
Samya K. Dyer ◽  
...  

AbstractBackgroundRepeated exposures to chronic stress can lead to long lasting negative behavioral and metabolic outcomes. Here, we aim to determine the impact of chronic stress and chronic low-level inflammation on behavior and synaptosomal metabolism.MethodsMale (n = 31) and female (n = 32) C57Bl/6 mice underwent chronic repeated predation stress or daily handling for two rounds of 15 consecutive days of exposure during the adolescent and early adult timeframes. Subsequently, mice were exposed to repeated lipopolysaccharide (LPS; 7.5 x 105 EU/kg) or saline injections every third day for eight weeks. Exploratory and social behaviors were assessed in the open field and social interaction tests prior to examination of learning and memory with the Barnes Maze. Mitochondrial function and morphology were assessed in synaptosomes post-mortem. In addition, expression of TNF-α, IL-1ß, and ROMO1 were examined in the hippocampus and prefrontal cortex. Circulating pro- and anti-inflammatory cytokines in the periphery were assessed following the first and last LPS injection as well as at the time of tissue collection. Circulating ROMO1 was assessed in terminal samples.ResultsExposure to repeated predatory stress increased time spent in the corners of the open field, suggestive of anxiety-like behavior, in both males and females. There were no significant group differences in the social interaction test and minimal effects were evident in the Barnes maze. A history of chronic stress interacted with chronic LPS in male mice to lead to a deficit in synaptosomal respiration. Female mice were more sensitive to both chronic stress and chronic LPS such that either a history of chronic stress or a history of chronic LPS was sufficient to disrupt synaptosomal respiration in females. Both stress and chronic LPS were sufficient to increase inflammation and reactive oxygen in males in the periphery and centrally. Females had increased markers of peripheral inflammation following acute LPS but no evidence of peripheral or central increases in inflammatory factors or reactive oxygen following chronic exposures.ConclusionCollectively, these data suggest that while metrics of inflammation and reactive oxygen are disrupted in males following chronic stress and chronic LPS, only the combined condition is sufficient to alter synaptosomal respiration. Conversely, although evidence of chronic inflammation or chronic elevation in reactive oxygen is absent, females demonstrate profound shifts in synaptosomal mitochondrial function with either a history of chronic stress or a history of chronic inflammation. These data highlight that differential mechanisms are likely in play between the sexes and suggest that female sensitivity to neurogenerative conditions may be precipitated by influence of life experiences on mitochondrial function in the synapses.


Sign in / Sign up

Export Citation Format

Share Document